成年人在线观看视频免费,国产第2页,人人狠狠综合久久亚洲婷婷,精品伊人久久

我要投稿 投訴建議

高一數(shù)學教學設計

時間:2021-02-07 19:44:12 教學設計 我要投稿

高一數(shù)學集合教學設計

  集合(簡稱集)是數(shù)學中一個基本概念,它是集合論的研究對象,集合論的基本理論直到19世紀才被創(chuàng)立。最簡單的說法,即是在最原始的集合論——樸素集合論中的定義,集合就是“確定的一堆東西”。集合里的“東西”,叫作元素。下面是高一數(shù)學集合教學設計,請參考!

高一數(shù)學集合教學設計

  高一數(shù)學集合教學設計

  教學目的:

  (1)使學生初步理解集合的概念,知道常用數(shù)集的概念及記法

  (2)使學生初步了解屬于關系的意義

  (3)使學生初步了解有限集、無限集、空集的意義

  教學重點:集合的基本概念及表示方法

  教學難點:運用集合的兩種常用表示方法列舉法與描述法,正確表示一些簡單的集合

  授課類型:新授課

  課時安排:1課時

  教 具:多媒體、實物投影儀

  內(nèi)容分析:

  1.集合是中學數(shù)學的一個重要的基本概念 在小學數(shù)學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集 至于邏輯,可以說,從開始學習數(shù)學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具 這些可以幫助學生認識學習本章的意義,也是本章學習的基礎

  把集合的初步知識與簡易邏輯知識安排在高中數(shù)學的最開始,是因為在高中數(shù)學中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學習、掌握和使用數(shù)學語言的基礎 例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯

  本節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子

  這節(jié)課主要學習全章的引言和集合的基本概念 學習引言是引發(fā)學生的學習興趣,使學生認識學習本章的意義 本節(jié)課的教學重點是集合的基本概念

  集合是集合論中的原始的、不定義的概念 在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識 教科書給出的一般地,某些指定的對象集在一起就成為一個集合,也簡稱集 這句話,只是對集合概念的`描述性說明

  教學過程:

  一、復習引入:

  1.簡介數(shù)集的發(fā)展,復習最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

  2.教材中的章頭引言;

  3.集合論的創(chuàng)始人康托爾(德國數(shù)學家)(見附錄);

  4.物以類聚,人以群分

  5.教材中例子(P4)

  二、講解新課:

  閱讀教材第一部分,問題如下:

  (1)有那些概念?是如何定義的?

  (2)有那些符號?是如何表示的?

  (3)集合中元素的特性是什么?

  (一)集合的有關概念:

  由一些數(shù)、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.

  定義:一般地,某些指定的對象集在一起就成為一個集合.

  1、集合的概念

  (1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)

  (2)元素:集合中每個對象叫做這個集合的元素

  2、常用數(shù)集及記法

  (1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合 記作N,

  (2)正整數(shù)集:非負整數(shù)集內(nèi)排除0的集 記作N*或N+

  (3)整數(shù)集:全體整數(shù)的集合 記作Z ,

  (4)有理數(shù)集:全體有理數(shù)的集合 記作Q ,

  (5)實數(shù)集:全體實數(shù)的集合 記作R

  注:(1)自然數(shù)集與非負整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0

  (2)非負整數(shù)集內(nèi)排除0的集 記作N*或N+ Q、Z、R等其它

  數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*

  3、元素對于集合的隸屬關系

  (1)屬于:如果a是集合A的元素,就說a屬于A,記作aA

  (2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

  4、集合中元素的特性

  (1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可。

  (2)互異性:集合中的元素沒有重復

  (3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗?

  5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q

  元素通常用小寫的拉丁字母表示,如a、b、c、p、q

 、频拈_口方向,不能把aA顛倒過來寫

  三、練習題:

  1、教材P5練習1、2

  2、下列各組對象能確定一個集合嗎?

  (1)所有很大的實數(shù) (不確定)

  (2)好心的人 (不確定)

  (3)1,2,2,3,4,5.(有重復)

  3、設a,b是非零實數(shù),那么 可能取的值組成集合的元素是_-2,0,2__

  4、由實數(shù)x,-x,|x|, 所組成的集合,最多含( A )

  (A)2個元素 (B)3個元素 (C)4個元素 (D)5個元素

  5、設集合G中的元素是所有形如a+b (aZ, bZ)的數(shù),求證:

  (1) 當xN時, x

  (2) 若xG,yG,則x+yG,而 不一定屬于集合G

  證明(1):在a+b (aZ, bZ)中,令a=xN,b=0,

  則x= x+0* = a+b G,即xG

  證明(2):∵xG,yG,

  x= a+b (aZ, bZ),y= c+d (cZ, dZ)

  x+y=( a+b )+( c+d )=(a+c)+(b+d)

  ∵aZ, bZ,cZ, dZ

  (a+c) Z, (b+d) Z

  x+y =(a+c)+(b+d) G,

  又∵ =

  且 不一定都是整數(shù),

  = 不一定屬于集合G

  四、小結:本節(jié)課學習了以下內(nèi)容:

  1.集合的有關概念:(集合、元素、屬于、不屬于)

  2.集合元素的性質(zhì):確定性,互異性,無序性

  3.常用數(shù)集的定義及記法

【高一數(shù)學集合教學設計】相關文章:

數(shù)學教學設計12-27

數(shù)學教學設計13篇05-26

初中數(shù)學優(yōu)秀教學設計04-21

小學數(shù)學教學設計:《找規(guī)律》04-06

數(shù)學課堂教學設計08-24

乘法分配律數(shù)學教學設計03-24

小數(shù)乘小數(shù)小學數(shù)學教學設計03-20

數(shù)學《解簡易方程》優(yōu)秀教學設計范文07-02

《鴻門宴》高一語文教學設計03-03

《窮人》教學設計集合15篇03-05