《圓柱的體積》教學(xué)設(shè)計集錦15篇
作為一名教師,總不可避免地需要編寫教學(xué)設(shè)計,教學(xué)設(shè)計一般包括教學(xué)目標(biāo)、教學(xué)重難點、教學(xué)方法、教學(xué)步驟與時間分配等環(huán)節(jié)。一份好的教學(xué)設(shè)計是什么樣子的呢?以下是小編幫大家整理的《圓柱的體積》教學(xué)設(shè)計,歡迎閱讀,希望大家能夠喜歡。
《圓柱的體積》教學(xué)設(shè)計1
教學(xué)圓錐的體積是在掌握了圓錐的認(rèn)識和圓柱的體積的基礎(chǔ)上教學(xué)的。教學(xué)時讓學(xué)生通過實驗來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關(guān)系,從而得出圓錐的體
積等于和它等底等高的圓柱體積的三分之一,并能運(yùn)用這個關(guān)系計算圓錐的體積,讓學(xué)生從感性認(rèn)識上升到理性認(rèn)識。
我讓學(xué)生觀察,先猜測圓錐的體積和什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。教師從展示實物圖形到空間圖形,采用對比的方法,不斷加深學(xué)生對形體的認(rèn)識。然后讓學(xué)生動手實驗:有的組用捏橡皮泥的方法,有的組用到沙子的方法;有的組用計算的方法。讓孩子親歷教學(xué)的驗證過程,從實驗中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。接著我趁熱打鐵,讓學(xué)生想一想等積等高的時候,圓柱和圓錐有什么樣的關(guān)系?等積等底的時候,圓柱和圓錐又會有什么樣的關(guān)系?這樣,就有一種水到渠成的感覺。對圓錐的體積建立了鮮明的印象之后,就應(yīng)用公式解決實際的生活問題,起到鞏固深化知識點的'作用。
圓錐的體積這節(jié)課的教學(xué)具有下面的特點,一是在教學(xué)新課時,沒有像傳統(tǒng)教學(xué)那樣,直接拿出等底等高的圓柱和圓錐容器的教具,讓學(xué)生觀察倒沙實驗,而是通過師生交流、問答、猜想等形式,調(diào)動學(xué)生的積極性,激發(fā)學(xué)生強(qiáng)烈的探究欲望,學(xué)生迫切希望通過實驗來證實自己的猜想,所以做起實驗就興趣盎然;二是在實驗時,讓學(xué)生小組合作親自動手實驗,以實驗要求為主線,即動手操作,又動腦思考,努力探索圓錐體積的計算方法。這樣的學(xué)習(xí),學(xué)生學(xué)的活,記得牢,即發(fā)揮教師的主導(dǎo)作用,又體現(xiàn)了學(xué)生的主體地位。學(xué)生在學(xué)習(xí)的過程中,始終是一個探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗
在教學(xué)之后感覺到遺憾的是,由于教具有限,參與實驗的學(xué)生不多,如果每個小組準(zhǔn)備一套學(xué)具,讓他們以小組合作學(xué)習(xí)的方式使每個學(xué)生都能真切的參與到探究中去,這樣每個學(xué)生都能懷著喜悅的心情進(jìn)行學(xué)習(xí),最大限度的發(fā)揮每個學(xué)生的自主學(xué)習(xí)的能力,這樣的學(xué)習(xí)不僅使學(xué)生學(xué)會了知識,更重要的是培養(yǎng)了學(xué)生的能力。
教材中圓錐體積的相對練習(xí)較少,但在考試?yán)锩鎸嶋H解決問題中卻常常需要學(xué)生能夠靈活應(yīng)用,所以特別增加了一課時練習(xí)。教學(xué)中的一組填空題,對于幫助學(xué)生深入理解等底等高圓柱與圓錐的聯(lián)系很有價值。通過練習(xí),學(xué)生們明確了圓柱與等底等高的圓錐體積和為4個圓錐的體積(或三分之四個圓柱的體積),而它們的體積相差2個圓錐的體積(或三分之二個圓柱的體積)??。掌握這些知識對于解決實際問題很有幫助,如將圓柱削成最大的圓錐,求削去部分的體積是多少,就可直接用圓柱的體積乘三分之二從而使計算簡便。
教學(xué)的最后我與孩子們一起通過大量的練習(xí),引導(dǎo)總結(jié)出了圓柱和圓錐體積和高(或者是底面積)相等,那么圓錐的底面積(或高)是圓柱的3倍,圓柱的底面積(或高)是圓錐的三分之一。
總而言之,圓柱圓錐的體積計算是教學(xué)的重點和難點,也是考試中學(xué)生容易丟分的危險高發(fā)內(nèi)容,我在后面的教學(xué)中需要精講和精煉,讓學(xué)生熟能生巧、巧能生精,內(nèi)化成自己的數(shù)學(xué)直覺方為最高層次!
《圓柱的體積》教學(xué)設(shè)計2
一、教學(xué)對象及學(xué)習(xí)內(nèi)容特點分析:
圓柱的體積是小學(xué)立體幾何圖形中的重要內(nèi)容之一,是已學(xué)的長方體知識和將學(xué)的圓椎體知識的橋梁,其公式是長方體、正方體體積公式V=Sh的延續(xù)。
二、教學(xué)目的:
學(xué)生能借助媒體提供的資源理解和掌握圓柱體積的計算公式。
學(xué)生能應(yīng)用圓柱體積公式進(jìn)行圓柱體積的計算。
學(xué)生能利用知識之間相互"轉(zhuǎn)化"的思想探索解決新的問題。
三、教學(xué)基本指導(dǎo)思想、教學(xué)策略和方法:整個過程,充分利用計算機(jī)的優(yōu)點,以小組學(xué)習(xí)的形式,發(fā)揮學(xué)生的主體作用,教師是學(xué)生學(xué)習(xí)過程的組織者和輔導(dǎo)者。長方體的體積公式和平面圖形的面積公式已學(xué)過,因此引導(dǎo)學(xué)生用轉(zhuǎn)化的思想去學(xué)習(xí),并創(chuàng)設(shè)情景,讓學(xué)生自己發(fā)現(xiàn)問題,利用電腦、課本、實物提供的資源協(xié)商解決問題,使全體學(xué)生都成為學(xué)習(xí)的主人。
四、教學(xué)運(yùn)用的主要手段、技術(shù)、材料:電腦網(wǎng)絡(luò)、實物投影、圓柱體。
五、教學(xué)過程的設(shè)想和點評
教師的教學(xué)行為學(xué)生的學(xué)習(xí)行為點評
第一階段:創(chuàng)設(shè)情景,設(shè)疑引趣。
教師故事引入:圓柱形狀的"轉(zhuǎn)筆刀"和"漿糊筆"迎著朝陽高高興興上學(xué)了,走著走著,它們就為哪個體積大而爭論起來,"轉(zhuǎn)筆刀"很自信地說:"看我這么胖,肯定是我的體積大!""漿糊筆"很不服氣地說:"我比你高多了,一定是我的體積大!"就這樣你一言我一語,爭論了很久還沒個結(jié)果。
提問:小組討論尋找解決這兩個圓柱體積大小的方法。
1、學(xué)生小組討論解決的方法。
2、小結(jié)歸納:解決圓柱的體積的方法:尋找一種方法,導(dǎo)出圓柱的體積公式,然后應(yīng)用公式求圓柱的體積。
通過情景的創(chuàng)設(shè),激發(fā)學(xué)生的學(xué)習(xí)熱情,讓他們發(fā)現(xiàn)問題,并通過討論找出解決的方法,使學(xué)生從被動學(xué)習(xí)變?yōu)橹鲃訉W(xué)習(xí),學(xué)生對這節(jié)課的學(xué)習(xí)也從宏觀上得到了解。學(xué)生解決問題的方法有出人意料的回答,老師根據(jù)情況,給予恰當(dāng)?shù)墓膭钚缘脑u價,以激發(fā)學(xué)生的思維。
第二階段: 自主探究。概括規(guī)律
1、電腦提供學(xué)生探索資源:
(1)平面圖形(長方形、正方形、平行四邊形、三角形、梯形、圓形)面積公式和立體圖形(長方體、正方體)體積公式的導(dǎo)出過程。
(2)把圓柱的底面分成許多相等的扇形,然后把圓柱切開,拼成一個近似的長方體。
2、學(xué)生反饋自學(xué)內(nèi)容,師生共同導(dǎo)出圓柱的體積公式V=Sh1、學(xué)生打開電腦"自能學(xué)習(xí)"中的"尋方法",有選擇地看學(xué)過的平面圖形的面積公式和立體圖形體積公式的導(dǎo)出過程,從中找到推導(dǎo)圓柱體積公式的方法
2、學(xué)生通過觀察圓柱公式的推導(dǎo)過程。
3、小組討論填寫實驗報告。
4、師生導(dǎo)出圓柱的體積公式后,學(xué)生自學(xué)課本例題,并完成例4內(nèi)容。通過利用資源、自能學(xué)習(xí),讓全體學(xué)生都能動腦、動口、動手參與到學(xué)習(xí)中去,使學(xué)生學(xué)會學(xué)習(xí)、學(xué)會協(xié)作,所學(xué)知識的理解更為深刻、透徹。在自學(xué)的過程中教師通過監(jiān)控密切觀察著學(xué)生的學(xué)習(xí)情況,發(fā)現(xiàn)問題及時解決。
圓柱體積公式的推導(dǎo)過程,學(xué)生會有不同的方法,如用課本的方法或用類比的.方法,教師應(yīng)給予恰當(dāng)?shù)脑u價。
第三階段:拓展公式,自能訓(xùn)練。
1、公式拓展。
在日常生活中,圓柱的底面積通常沒有直接給出,那么我們通過什么條件也能求出圓柱的底面積呢?
2、教師小結(jié):無論已知圓柱的底面半徑、直徑還是底面周長,我們都必須根據(jù)V=Sh,先求出圓柱的底面積,然后乘以高才能求出圓柱的體積。
3、質(zhì)疑
1、學(xué)生可根據(jù)已學(xué)的"圓的面積"公式導(dǎo)出。
(當(dāng)已知圓柱底面的半徑時V=∏r2h、當(dāng)已知直徑時V=∏(d÷2)2h、當(dāng)已知周長時,先求半徑,再求底面積,然后求圓柱體積。
2、判斷。并說明原因
(1) 一個圓柱體的底面積是8平方厘米,高是6厘米,這個圓柱體的體積是48立方厘米。
(2) 一個圓柱的底面積是10平方米,高是10米,它的體積是100平方米。
。3) 一個圓柱體鐵罐,底面直徑是2米,高是3米,求它的體積。 列式是:3.14×22×3
1、根據(jù)生活實際,當(dāng)知道圓柱底面半徑、直徑或周長時,怎樣求圓柱的體積這個問題,可以讓學(xué)生充分拓展思維,不要停留在只會死記公式、生搬硬套的低層次上。并大力鼓勵、表揚(yáng)愛動腦筋的同學(xué)
2、通過練習(xí),學(xué)生對基本知識有一定的理解,教師也了解了學(xué)生對知識的掌握情況。
第四階段:反饋學(xué)習(xí)、應(yīng)用提高。
1、提出練習(xí)要求:先做"鞏固"練習(xí),有余力的再做"提高"練習(xí)。
2、小結(jié)練習(xí)情況,及時表揚(yáng)對而快的同學(xué)及小組
3、回應(yīng)開頭,解決"漿糊筆"和"轉(zhuǎn)筆刀"爭論的問題。學(xué)生在電腦上完成。
1、賽車游戲:看誰跑得快。
。1)圓柱的底面積是15平方米,高是3米,體積是( )立方米。
。2)已知圓柱的高是20厘米,底面積100平方厘米,圓柱的體積是( )平方厘米。
。3)一個圓柱形的糧囤,從里面量底面半徑是2米,高是2.5米。這個糧囤能裝稻谷( )立方米。
(4)一個圓柱的體積是80立方分米,底面積是16平方分米,它的高是( )分米。
2、提高練習(xí)?寄阒腔郏嚎凑l攀得高。
(1)一個圓柱,它的底面直徑4厘米,高是3米,體積是( )立方厘米。
。2)一個圓柱體鐵架,它的底面周長是62.8分米,高是6分米,它的體積是( )立方分米。
在計算過程中,學(xué)生會遇到不少問題,可通過師生交流或小組互相幫助解決,從而實現(xiàn)互幫、互學(xué)共同提高。
六、歸納總結(jié)、自我評價。
1、提出要求,學(xué)生談收獲。
2、總結(jié)本節(jié)情況。 談收獲,并作出自我評價。通過談收獲,體現(xiàn)學(xué)習(xí)的自主性,體驗獲得成功的樂趣。
七、對教學(xué)過程的設(shè)想和點評:
新課程標(biāo)準(zhǔn)注重小學(xué)生對周圍世界與生俱來的探究興趣和需要,在小學(xué)階段,學(xué)生的知識積累與思維能力較為有限,強(qiáng)調(diào)用符合小學(xué)生年齡特點的方式學(xué)習(xí),提倡課程貼近小學(xué)生的生活,這節(jié)課從學(xué)生身邊學(xué)習(xí)用品"卷筆刀"和"漿糊筆"的入手,通過擬人的方式,由它們上學(xué)過程中引起的爭論導(dǎo)出學(xué)習(xí)的內(nèi)容,激發(fā)學(xué)生學(xué)習(xí)的積極性。這樣在教學(xué)進(jìn)程中安排好相關(guān)的情景組織學(xué)生參與其中,親歷過程,自主地開展活動,通過看、做、玩、想等方式,讓學(xué)生既學(xué)會知識與技能,又培養(yǎng)智能、情感態(tài)度與價值觀,促進(jìn)學(xué)生科學(xué)素養(yǎng)的形成。
新課標(biāo)還積極倡導(dǎo)讓學(xué)生親身經(jīng)歷以探究為主的學(xué)習(xí)活動,培養(yǎng)他們的好奇心和探究欲,使他們學(xué)會探究解決問題的策略,為他們終身的學(xué)習(xí)和生活打好基礎(chǔ)。這是一節(jié)在網(wǎng)絡(luò)環(huán)境下開展的探究型數(shù)學(xué)課,引入后,教師則大膽放手,營造了一個開放的探究空間,通過學(xué)生小組討論尋找比較圓柱大小的方法,引導(dǎo)學(xué)生通過自主、合作探究這種學(xué)習(xí)方式進(jìn)行實踐活動,觀察由圓柱轉(zhuǎn)變成已學(xué)過長方體的過程,在觀察中相互啟發(fā),共同提高,形成共識后并加以記錄。再將大家的記錄結(jié)果對比、討論、從而得出結(jié)論:圓柱的體積=轉(zhuǎn)變成的長方體的體積,從而導(dǎo)出圓柱的體積公式V=SH。在這一過程中,教師以學(xué)生的發(fā)展為本,關(guān)注每一位的發(fā)展,珍視每位學(xué)生的探究體驗及獨特見解,在學(xué)生探究結(jié)果的表述過程中,對同一個問題,不同的人可以得出不同的結(jié)論,他們通過互相交流互相討論,思維更是得到發(fā)展與創(chuàng)新。不僅激發(fā)了每一位學(xué)生主動參與探究實踐活動,更讓學(xué)生在探究中學(xué)會合作、懂得思考、大膽發(fā)表自己的獨特見解,更學(xué)會傾聽、尊重他人的意見,從而實現(xiàn)互幫、互學(xué)共同提高,并在探究中發(fā)現(xiàn)、學(xué)習(xí),激發(fā)學(xué)生學(xué)習(xí)的興趣,培養(yǎng)了實踐的能力。
網(wǎng)絡(luò)環(huán)境下的教學(xué)方式不僅改變了以往教師滿堂灌的現(xiàn)象,在拓寬學(xué)生知識面的同時,更培養(yǎng)了學(xué)生搜集信息、處理信息并進(jìn)行合理解釋的能力,大大地激發(fā)了學(xué)生自主學(xué)習(xí)的積極性,學(xué)生的創(chuàng)新意識日漸增強(qiáng),真正實現(xiàn)了利用信息技術(shù)為教學(xué)內(nèi)容服務(wù)。
《圓柱的體積》教學(xué)設(shè)計3
學(xué)情分析:
根據(jù)六年級的教學(xué)情況來看,班中絕大部分同學(xué)都能跟上現(xiàn)有的進(jìn)度,通過本節(jié)課教學(xué)要使靈活運(yùn)用圓柱體積的計算方法解決生活中一些簡單的問題,通過想象、操作等活動,理解圓柱體體積公式的推導(dǎo)過程,掌握計算公式;會運(yùn)用公式計算圓柱的體積。
教學(xué)目標(biāo):
1.通過切割圓柱體,拼成近似的長方體,從而推導(dǎo)出圓柱的體積公式這一教學(xué)過程,向?qū)W生滲透轉(zhuǎn)化思想。
2.通過圓柱體體積公式的推導(dǎo),培養(yǎng)學(xué)生的分析推理能力。
3.理解圓柱體體積公式的推導(dǎo)過程,掌握計算公式;會運(yùn)用公式計算圓柱的體積。
教學(xué)重點:
圓柱體體積的計算
教學(xué)難點:
圓柱體體積公式的推導(dǎo)
教學(xué)用具:
圓柱體學(xué)具、
教學(xué)過程:
一、復(fù)習(xí)引新
1.求下面各圓的面積(回答)。
(1)r=1厘米; (2)d=4分米; (3)C=6.28米。
要求說出解題思路。
2.提問:什么叫體積?常用的體積單位有哪些?
3.已知長方體的`底面積s和高h(yuǎn),怎樣計算長方體的體積?(板書:長方體的體積=底面積×高)
二、探索新知
1、根據(jù)學(xué)過的體積概念,說說什么是圓柱的體積。(板書課題)
2、公式推導(dǎo)。(有條件的可分小組進(jìn)行)
(1)請同學(xué)指出圓柱體的底面積和高。
(2)回顧圓面積公式的推導(dǎo)。(切拼轉(zhuǎn)化)
3、回顧了圓的面積公式推導(dǎo),你有什么啟發(fā)?
生答:把圓柱轉(zhuǎn)化成長方體計算體積。
4、動手操作。
請2位同學(xué)上臺用教具來演示,邊演示邊講解。
把圓柱的底面平均分成16份,切開后把它拼成一個近似地長方體。
多請幾組同學(xué)上臺講解,完善語言。
提問:為什么用“近似”這個詞?
5、教師演示。
把圓柱拼成了一個近似的長方體。
6、如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?
生答:拼成的物體越來越接近長方體。
追問:為什么?
生答:平均分的份數(shù)越多,每份就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體。
7、剛才我們通過動手操作,把圓柱切拼成一個近似的長方體。
師:拼成的長方體和原來的圓柱有什么聯(lián)系?請與同學(xué)們進(jìn)行交流?
出示討論題。
(1)、拼成的長方體的底面積與原來圓柱的底面積有什么關(guān)系?為什么是相等的?
。2)、拼成的長方體的高與原來圓柱的高有什么關(guān)系?為什么是相等的?
。3)、拼成的長方體的體積與原來圓柱的體積有什么關(guān)系?為什么?
板書:
長方體體積 底面積 高
圓柱體積 底面積 高
8、根據(jù)上面的實驗和討論,想一想,可以怎樣求圓柱的體積?
生答:把圓柱切拼成一個近似的長方體,拼成的長方體的底面積等于圓柱的底面積,拼成長方體的高等于圓柱的高,因為長方體體積=底面積×高,所以圓柱體積=底面積×高。
9、用字母如何表示。
V=sh
10、小結(jié)。
圓柱的體積是怎樣推導(dǎo)出來的?計算圓柱的體積必須知道哪些條件?
11、教學(xué)算一算
審題。提問:你能獨立完成這題嗎?指名一同學(xué)板演,其余學(xué)生做在練習(xí)本上。集體訂正:列式依據(jù)是什么?應(yīng)注意哪些問題?最后結(jié)果用體積單位)
12、教學(xué)“試一試”
小結(jié):求圓柱的體積,必須知道底面積和高。如果不知道底面積,只知道半徑r,通過什么途徑求出圓柱的體積?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面積再求體積。
三、鞏固練習(xí)
課后“練一練”里的練習(xí)題。
四、課堂小結(jié)
這節(jié)課學(xué)習(xí)了什么內(nèi)容?圓柱的體積怎樣計算,這個公式是怎樣得到的?指出:這節(jié)課,我們通過轉(zhuǎn)化,把圓柱體切拼轉(zhuǎn)化成長方體,(在課題下板書:圓柱轉(zhuǎn)化長方體)得出了圓柱體的體積計算公式V=Sh。
《圓柱的體積》教學(xué)設(shè)計4
教學(xué)目標(biāo):
1.結(jié)合實際,讓學(xué)生探索并掌握圓柱體積的計算方法,并能運(yùn)用計算公式解決簡單的實際問題。
2.讓學(xué)生經(jīng)歷觀察、猜想、驗證等數(shù)學(xué)活動過程,培養(yǎng)學(xué)生探究推理能力,體驗數(shù)學(xué)研究的方法。
3.通過圓柱體積計算公式的推導(dǎo)、運(yùn)用的過程,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點:
掌握和運(yùn)用圓柱體積計算公式。
教學(xué)準(zhǔn)點:
掌握圓柱體積公式的推導(dǎo)過程。
教學(xué)設(shè)想:
1.課前互動,我們做一個吹氣球的游戲,讓學(xué)生來對比氣球變大后所占用空間的變化。在熱烈的氣氛中讓學(xué)生感受物體的體積就是物體所占用空間的大小。
2.教學(xué)伊始我創(chuàng)設(shè)學(xué)具槽做圓柱學(xué)具這一睛境,讓學(xué)生感知圓柱體積的概念,再通過讓學(xué)生給這4個圓柱學(xué)具排序這一問題設(shè)疑,讓學(xué)生明確學(xué)習(xí)目標(biāo)。
3.動手實踐是學(xué)生體驗的主要方式,合作交流是學(xué)生體驗的有效途徑。所以在教學(xué)中我為圖形轉(zhuǎn)化、猜想推理創(chuàng)設(shè)有助于學(xué)生自主探究的三步曲:第一步:選擇轉(zhuǎn)化的方法。第二步:體驗轉(zhuǎn)化的過程、第三步:驗證轉(zhuǎn)化的結(jié)果。引導(dǎo)學(xué)生開展觀察、操作、猜想、交流、轉(zhuǎn)化的活動,讓學(xué)生在數(shù)學(xué)活動中經(jīng)歷數(shù)學(xué)、體驗數(shù)學(xué)。
4.用字母表示公式已經(jīng)是學(xué)生很熟知的幾何知識,因此我為學(xué)生提供了與圓柱體積有關(guān)的字母,讓他們寫出相應(yīng)的公式并在接下來的環(huán)節(jié)中引導(dǎo)學(xué)生發(fā)現(xiàn)公式與習(xí)題的聯(lián)系,讓他們對號入座。學(xué)生根據(jù)不同的公式進(jìn)行計算,給4個圓柱學(xué)具排序。這樣可以深入理解不同的條件、不同的方法,同樣可以得到圓柱的體積,在對比算法中掌握新知。 5.體積和容積這兩個概念在五年級已經(jīng)學(xué)過,學(xué)生會說意義,但是通過了解,學(xué)生并不是真正理解圓柱的體積和容積。所以我在第一次探究中安排了這樣的環(huán)節(jié),讓學(xué)生在學(xué)習(xí)實踐中區(qū)別圓柱的容積和體積。從形象到抽象建立圓柱的體積概念,符合學(xué)生的認(rèn)知規(guī)律。第二次探究則是加入表面積這一剛剛學(xué)過的內(nèi)容,讓學(xué)生在為3道選擇問題的練習(xí)中達(dá)到區(qū)別體積、容積、表面積的目的,從而實現(xiàn)學(xué)習(xí)運(yùn)用的最佳狀態(tài)。 6.最后的思維訓(xùn)練是計算正方體中最大圓柱體的體積,給學(xué)生以生動、形象、直觀的認(rèn)識,此題算法多樣,富于啟發(fā)地清晰揭示了知識的內(nèi)在規(guī)律,使它和教學(xué)過程有機(jī)組合,把學(xué)習(xí)延伸到實際,讓知識在體驗中生成。
7.由于每個學(xué)生的知識經(jīng)驗、生活情景、思維方式的不同,對知識的學(xué)習(xí)也有獨特的理解和感受。所以我讓他們用今天的知識去解決生活中的問題,并寫成數(shù)學(xué)日記,讓他們用自己的方式去體驗、探究學(xué)習(xí)過程。
教學(xué)過程:
一、問題導(dǎo)入,質(zhì)疑問難
師:老師這里有兩個氣球,(師從兜里掏出兩個氣球,將其中一個遞給學(xué)生。)你試試把它們變大。(老師再把兩個氣球放回兜里。)為什么這個放不回去了?(因為其中一個的體積變大了。)看來它占據(jù)了很大的空間。教室中還有哪些物體占據(jù)空間?
師:這是一個制作學(xué)具的學(xué)具槽,想一想,它可以做出什么樣的學(xué)具來?
生:圓柱學(xué)具。
師:是的。仔細(xì)觀察,你有什么發(fā)現(xiàn)?
生:圓柱學(xué)具占據(jù)了學(xué)具槽的空間。
師:這就是圓柱學(xué)具的體積。你真善于發(fā)現(xiàn)!能用你的話說說,什么是圓柱的體積嗎?
生:圓柱的體積就是圓柱所占空間的大小。
師:誰來試著給這4個圓柱學(xué)具按體積從大到小排排序?你來試試。
生:體積大小接近,不能確定。
師:老師聽懂了,無法判斷的原因是不知道圓柱體積的大小,現(xiàn)在我們就來研究圓柱的體積。(師板書。)
二、圖形轉(zhuǎn)化。猜想推理
師:想一想,你有辦法得到這4個圓柱學(xué)具的體積嗎?(圓柱課件再從槽中跳出。) 生:用公式計算。 生:用水或沙子轉(zhuǎn)化計算。 師:你們是怎樣轉(zhuǎn)化的,具體說說。
生:用橡皮泥轉(zhuǎn)化計算。
生:用圓形紙片疊加計算……
師:嗯,這些方法都很好,就在今天的課堂你會選擇哪種方法?
生:因為沒有實驗學(xué)具,所以只能用公式計算。
師:其他的方法可以在課后進(jìn)行。
師:想用公式計算的同學(xué),你想怎樣推導(dǎo)圓柱的體積公式呢?結(jié)合你們以往學(xué)習(xí)幾何圖形的經(jīng)驗,舉例說明。
生:大部分圖形公式的推導(dǎo)都是把新學(xué)的轉(zhuǎn)化為學(xué)過的。例如:圓形可以轉(zhuǎn)化為長方形。
師:聯(lián)系舊知識,采用轉(zhuǎn)化法,確實不錯。 師:那現(xiàn)在它是一個圓柱,你想怎么辦?
生:像剛才一樣進(jìn)行平均分。
師:你能具體說說嗎?
生:沿著圓柱的.底面直徑平均切分成16個小扇形。
師:都說實踐出真知,接下來就請同學(xué)們拿出學(xué)具,動手嘗試著進(jìn)行轉(zhuǎn)化,并說說轉(zhuǎn)化后的結(jié)果。
生:將圓柱沿底面直徑平均分成16個小扇形,切分之后,可以拼成一個近似的長方體。
師:(剛才我們將圓柱沿底面直徑平均分成16個小扇形,拼成一個近似的長方體。)如果想讓它更近似于長方體,你想分成多少份?(32)更近似一點。(64)你呢?(128)……
師:這是同學(xué)們剛才的轉(zhuǎn)化過程。
師:打開書,自由讀,用直線標(biāo)記,找出關(guān)鍵詞,依照關(guān)鍵詞自由讀讀轉(zhuǎn)化的過程。
師:現(xiàn)在再請一名同學(xué)到前面來演示轉(zhuǎn)化過程,其他同學(xué)注意觀察,圓柱轉(zhuǎn)化為長方體后什么變了,什么沒變7(圓柱轉(zhuǎn)化為長方體時形狀變了,但是它們底面積、高和體積都沒變。)
總結(jié)文字公式:長方體體積=底面積×高
圓柱體體積=底面積×高
師:恭喜大家,我們已經(jīng)成功地推導(dǎo)出圓柱的體積公式。(掌聲鼓勵一下)老師這有一些字母:d、s、r、c、h、v、π。它們與圓柱體體積的計算公式息息相關(guān),請你們用字母表示出圓柱的體積公式。
生:v=sh v=(d/2)2π×hv=π2×h v=(c÷π/2)2π×h
師:對比這四個公式你又有什么新發(fā)現(xiàn)?(彩色粉筆畫線。)
生:相同之處都是底面積乘以高,不同是底面積求法不同。
師:謝謝你精彩的發(fā)現(xiàn),你叫什么名字,認(rèn)識一下,老師會記住你的。
三、運(yùn)用公式,解決問題
師:現(xiàn)在我們已經(jīng)知道了圓柱的體積公式,快來解決剛才的實際問題吧!這是我們要由大到小排序的4個圓柱學(xué)具,請你們拿出題卡計算出它們的體積并排序。
1號底面積50平方厘米,高2.1分米:
2號直徑是10厘米,高20厘米;
3號半徑是4厘米,高22厘米;
4號底面周長31.4厘米,高18厘米。
師:匯報一下你的計算和排序結(jié)果,并說說你應(yīng)用了哪個公式?
師:與他答案相同的同學(xué)舉手示意一下,你是怎樣做的?現(xiàn)在你清楚了嗎?
師:看來,靈活運(yùn)用公式,并選擇合理的算法。會使我們的學(xué)習(xí)更高效。
四、巧用公式,多重探究
師:同學(xué)們到現(xiàn)在為止,你都學(xué)到了哪些關(guān)于圓柱的知識?
生:表面積、體積、容積。
師:老師這里有一組習(xí)題。請你們選擇合適的問題。
師:讀完之后,你認(rèn)為求什么就可以大聲地說出來。
(生:體積、容積、表面積。)
學(xué)具廠有一個制作學(xué)具的圓柱形鐵皮桶。它的底面直徑是22厘米,高是25厘米,_________?從里面量底面直徑是20厘米,高是25厘米______________9底面積是380平方厘米。側(cè)面積是1727平方厘米_________________?
師:說說你選擇問題的根據(jù)是什么?
生:體積是圓柱所占空間的大小。容積是圓柱能容納物體的大小,表面積是圓柱所有面積的總和。
五、開放訓(xùn)練,拓展提升
師:學(xué)習(xí)很愉快,我們來慶祝一下:在一個棱長為a分米正方體盒中,放一個最大的圓柱體蛋糕,系上b分米長的絲帶,(打結(jié)部分忽略不計)挖去1根直徑為c厘米,高是d厘米的圓柱蠟燭空隙,這個蛋糕體積到底是多少呢?這次我們男女生比賽,列式不計算,看誰解法多并說明解題思路。
《圓柱的體積》教學(xué)設(shè)計5
教學(xué)目標(biāo):
1.結(jié)合具體情境,讓學(xué)生探索并掌握圓柱體積的計算方法,并能運(yùn)用計算公式解決簡單的實際問題。
2.讓學(xué)生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗數(shù)學(xué)研究的方法。
3.通過圓柱體積計算公式的推導(dǎo)、運(yùn)用的過程,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點:讓學(xué)生探索并掌握圓柱體積的計算方法,并能運(yùn)用計算公式解決簡單的實際問題。
教學(xué)難點:讓學(xué)生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學(xué)活動過程掌握圓柱體積的計算方法。
教學(xué)方法:操作法、推理法、講授法
教學(xué)過程:
一、復(fù)習(xí)引新。
我們以前學(xué)過哪些立體圖形?
生答:長方體和正方體。
它們的體積是怎么求的?
長方體:長×寬×高,正方體:棱長×棱長×棱長。
二、教學(xué)例4。
1、出示長方體和正方體。
它們的底面積相等,高也相等。長方體和正方體的體積相等嗎?為什么?
生答:體積=底面積×高,所以長方體和正方體的體積相等。
2、出示圓柱。
猜一猜,圓柱的體積與長方體和正方體的體積相等嗎?
生猜測:相等。
究竟如何,今天我們就一起來研究圓柱的體積。
板書課題:圓柱的體積。
問:剛才只是你們的猜測,你準(zhǔn)備怎么驗證?依據(jù)是什么?(4人小組討論)
生:準(zhǔn)備把圓柱轉(zhuǎn)化成我們以前學(xué)過的立體圖形,來求它的體積。
依據(jù)是圓可以轉(zhuǎn)化成長方形計算面積。
3、出示課件。
回顧圓的面積計算公式是怎樣推導(dǎo)的。
4、回顧了圓的面積公式推導(dǎo),你有什么啟發(fā)?
生答:把圓柱轉(zhuǎn)化成長方體計算體積。
5、動手操作。
請2位同學(xué)上臺用教具來演示,邊演示邊講解。
把圓柱的底面平均分成16份,切開后把它拼成一個近似地長方體。
多請幾組同學(xué)上臺講解,完善語言。
提問:為什么用“近似”這個詞?
6、教師演示課件。
把圓柱拼成了一個近似的長方體。
7、如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?
生答:拼成的物體越來越接近長方體。
追問:為什么?
生答:平均分的份數(shù)越多,每份就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體。
8、剛才我們通過動手操作,把圓柱切拼成一個近似的長方體。
師:拼成的長方體和原來的圓柱有什么聯(lián)系?請與同學(xué)們進(jìn)行交流?
出示討論題。
1、拼成的長方體的底面積與原來圓柱的底面積有什么關(guān)系?為什么是相等的?
2、拼成的'長方體的高與原來圓柱的高有什么關(guān)系?為什么是相等的?
3、拼成的長方體的體積與原來圓柱的體積有什么關(guān)系?為什么?
板書:
長方體體積=底面積×高
圓柱體積=底面積×高
9、根據(jù)上面的實驗和討論,想一想,可以怎樣求圓柱的體積?
生答:把圓柱切拼成一個近似的長方體,拼成的長方體的底面積等于圓柱的底面積,拼成長方體的高等于圓柱的高,因為長方體體積=底面積×高,所以圓柱體積=底面積×高。
10、用字母如何表示。
11、出示例4。
現(xiàn)在你知道圓柱的體積與長方體、正方體的體積相等了嗎?
為什么?
生答:體積相等,都是用底面積×高。
V=sh
三、鞏固練習(xí)。
1、出示練習(xí)七第一題。
學(xué)生直接把答案填寫在表中。
提問:你是根據(jù)什么填寫的?
2、練一練。
這兩題,你打算怎么計算?
生答:不知道底面積,要先算出底面積,再乘高。
3.14×2×5 = 62.8(平方厘米)
3.14×(6÷2)×8 = 226.08(平方厘米)
3、一個圓柱形狀的糧囤,從里面量得底面周長是12.56米,高是2米。它的容積是多少立方米?
問:這道題和前面做的有什么不同?怎么計算?
生答:這是求容積的。所以數(shù)據(jù)是從里面量的。
4、練習(xí)七第2題。
觀察下面的3個杯子,你能看出哪個杯子的飲料多?
請學(xué)生猜一猜。
請學(xué)生列出三道算式。
。1)3.14×(8÷2)×4
。2)3.14×(6÷2)×7
(3)3.14×(5÷2)×10
問:你能不求出結(jié)果直接比較出大小嗎?
生答:第一個杯子的飲料多。
5、練習(xí)七第三題。
學(xué)生獨立解答。
指名說說是怎樣算的?
3.14×3×5×1= 141.3(千克)
141.3千克<150千克
答:這個保溫茶桶不能盛150千克水。
四、總結(jié)。
今天這節(jié)課你學(xué)到了什么?
《圓柱的體積》教學(xué)設(shè)計6
一、教學(xué)目標(biāo)
(一)知識與技能
用已學(xué)的圓柱體積知識解決生活中的實際問題,并滲透轉(zhuǎn)化思想。
(二)過程與方法
經(jīng)歷探究不規(guī)則物體體積的轉(zhuǎn)化、測量和計算過程,讓學(xué)生在動手操作中初步建立“轉(zhuǎn)化”的數(shù)學(xué)思想,體驗“等積變形”的轉(zhuǎn)化過程。
(三)情感態(tài)度和價值觀
通過實踐,讓學(xué)生在合作中建立協(xié)作精神,并增強(qiáng)學(xué)生“用數(shù)學(xué)”的意識。
二、教學(xué)重難點
教學(xué)重點:利用所學(xué)知識合理靈活地分析、解決不規(guī)則物體的體積的計算方法。
教學(xué)難點:轉(zhuǎn)化前后的溝通。
三、教學(xué)準(zhǔn)備
每組一個礦泉水瓶(課前統(tǒng)一搜集農(nóng)夫山泉礦泉水瓶,裝有適量清水,水高度分別為6、7、8、9厘米),直尺。
四、教學(xué)過程
(一)復(fù)習(xí)舊知,做好鋪墊
1.板書:圓柱的體積。
問:圓柱的體積怎么計算?體積和容積有什么區(qū)別?
2.揭題:這節(jié)課,我們要根據(jù)這些體積和容積的知識來解決生活中的實際問題。(完整板書:用圓柱的體積解決問題。)
【設(shè)計意圖】通過復(fù)習(xí)圓柱的體積計算方法以及體積和容積之間的聯(lián)系和區(qū)別,為學(xué)習(xí)新知做好知識上的準(zhǔn)備。
(二)探索實踐,體驗轉(zhuǎn)化過程
1.創(chuàng)設(shè)情境,提出問題。
每個小組桌子上有一個沒有裝滿水的礦泉水瓶。
教師:原本這是一瓶裝滿水的礦泉水,已經(jīng)喝了一部分,你能根據(jù)它來提一個數(shù)學(xué)問題嗎?(隨機(jī)板書)
預(yù)設(shè)1:瓶子還有多少水?(剩下多少水?)
預(yù)設(shè)2:喝了多少水?(也就是瓶子的空氣部分。)
預(yù)設(shè)3:這個瓶子一共能裝多少水?(也就是這個瓶子的容積是多少?)
2.你覺得你能輕松解決什么問題?
。1)預(yù)設(shè)1:瓶子有多少水?(怎么解決?)
學(xué)生:瓶子里剩下的水呈圓柱狀,只要量出這個圓柱的'底面直徑和高就能算出它的體積。
教師:需要用到什么工具?(直尺)你想利用直尺得到哪些數(shù)據(jù)?(底面直徑、水的高度)
小結(jié):知道了底面直徑和水的高度,要解決這個問題的確輕而易舉。請你準(zhǔn)備好直尺,或許等會兒有用哦!
。2)預(yù)設(shè)2:喝了多少水?
學(xué)生:喝掉部分的形狀是不規(guī)則,沒有辦法計算。
教師:當(dāng)物體形狀不規(guī)則時,我們想求出它的體積可以怎么辦?
教師相機(jī)引導(dǎo):能否將空氣部分變成一個規(guī)則的立體圖形呢?
學(xué)生能說出方法更好,不能說出則引導(dǎo):我們不妨把瓶子倒過來看看,你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生發(fā)現(xiàn):在瓶子倒置前后,水的體積不變,空氣的體積不變,因此,喝了多少水=倒置后空氣部分的體積,倒置后空氣部分是一個圓柱,要求出它的體積需要哪些數(shù)據(jù)?(倒置后空氣的高度)
小結(jié):這個方法不錯,我們利用水的流動性成功地將不規(guī)則的空氣部分轉(zhuǎn)化成了一個圓柱體,得到所需數(shù)據(jù)后能求出它的體積。這樣一來,第3個問題還難得到你嗎?
(3)怎么求這個礦泉水瓶的容積?引導(dǎo)學(xué)生得出:倒置前水的體積+倒置后空氣的體積=瓶子容積。
【設(shè)計意圖】課本中的例題呈現(xiàn)如下,
例題是直接呈現(xiàn)轉(zhuǎn)化方法的,我是想先屏蔽相關(guān)數(shù)據(jù)信息和方法,通過激發(fā)學(xué)生解決問題的內(nèi)在需求,根據(jù)自己的生活學(xué)習(xí)經(jīng)驗來想辦法解決,才有了對數(shù)學(xué)情境的改編,以期通過轉(zhuǎn)化、觀察、對比,讓學(xué)生發(fā)現(xiàn)倒置前后兩部分立體圖形之間的相同點,溝通兩部分體積之間的內(nèi)在聯(lián)系,順利地把新知轉(zhuǎn)化為舊知,分散了難點,從而找到解決問題的方法。
3.小組合作,測量計算。
。ǖV泉水瓶內(nèi)直徑為6cm)
教師:方法找到了,接下來能否正確求出瓶子的容積就看你們的了!
。1)課件出示:
一個內(nèi)直徑是( )的瓶子里,水的高度是( ),把瓶蓋擰緊倒置放平,無水部分是圓柱形,高度是( )。這個瓶子的容積是多少?(測量時取整厘米數(shù))
(2)四人小組合作:
A.組長安排好分工:
要量出所需數(shù)據(jù),其他組員要監(jiān)督好測量方法與結(jié)果是否正確,要按要求把題目填完整。
B.組內(nèi)互相說一說:倒置前后哪兩部分的體積不變?
礦泉水瓶的容積=( )+( )。
C.做好以上準(zhǔn)備工作后,利用所得數(shù)據(jù)獨立計算,再組內(nèi)校對結(jié)果是否正確。
【設(shè)計意圖】這一環(huán)節(jié)讓學(xué)生大膽動手操作,在實踐中不斷發(fā)現(xiàn)解決問題,在同伴的交流中拓展自己的思維,讓學(xué)生在合作中建立協(xié)作精神。
4.交流反饋。
教師巡查,選擇礦泉水瓶中原有水高度分別6、7、8、9厘米的同學(xué)板演。
瓶中水高度為6厘米的:
3.14×(6÷2)2×6+3.14×(6÷2)2×13
=3.14×9×(6+13)
≈537(毫升)。
瓶中水高度為7厘米的:
3.14×(6÷2)2×7+3.14×(6÷2)2×12
=3.14×9×(7+12)
≈537(毫升)。
瓶中水高度為8厘米的:
3.14×(6÷2)2×8+3.14×(6÷2)2×11
=3.14×9×(8+11)
≈537(毫升)。
瓶中水高度為9厘米的:
3.14×(6÷2)2×9+3.14×(6÷2)2×10
=3.14×9×(9+10)
≈537(毫升)。
教師:出示某品牌礦泉水瓶的標(biāo)簽,上面寫著凈含量為550毫升,基本符合。
5.解答正確嗎?
教師引導(dǎo)學(xué)生回顧反思:剛才我們是怎樣解決問題的?
小結(jié):根據(jù)具體情況選擇合適的轉(zhuǎn)化方法,像這樣不規(guī)則立體圖形的體積可以轉(zhuǎn)化為規(guī)則的立體圖形來計算。
【設(shè)計意圖】通過回顧解決問題的過程,幫助學(xué)生把本環(huán)節(jié)的數(shù)學(xué)活動經(jīng)驗進(jìn)行總結(jié),引導(dǎo)學(xué)生在后續(xù)的學(xué)習(xí)中碰到相似的問題也可同樣利用轉(zhuǎn)化的思想來解決。
(三)練習(xí)鞏固,學(xué)以致用
1.?dāng)?shù)學(xué)書P27做一做。
。1)學(xué)生獨立思考,解決問題。
(2)把自己的想法與同桌說一說。
。3)交流反饋:重點交流如何轉(zhuǎn)化,倒置后哪兩部分體積不變?
求小明喝了多少水實際上是求礦泉水瓶上面無水部分的體積,這部分為不規(guī)則的立體圖形。
將水瓶倒置后不規(guī)則容器轉(zhuǎn)化成了圓柱:該圓柱體積=小明喝了的水。
3.14×(6÷2)2×10=282.6(毫升)。
2.輸液100毫升,每分鐘輸2.5毫升,請觀察第12分鐘時吊瓶圖像中的數(shù)據(jù)。問整個吊瓶的容積是多少毫升?
。1)請學(xué)生計算,并反饋訂正。
。2)反饋要點:
整個吊瓶容積=圖像中空氣部分的容積+還剩下液體的體積。
根據(jù)圖象,可以得出在第12分鐘吊瓶有80毫升是空的。
剩下液體的體積=100-2.5×12=70(毫升)。
即整個吊瓶容積=80+70=150(毫升)。
【設(shè)計意圖】從生活中常見的吊瓶問題引出,感受數(shù)學(xué)與生活的密切聯(lián)系,能根據(jù)圖像提取解決問題的有效信息 ,既提升了所學(xué)知識,又關(guān)注了學(xué)生的思考,培養(yǎng)學(xué)生的分析、解決問題能力。
3.如下圖,一個底面周長為9.42厘米的圓柱體,從中間斜著截去一段后,它的體積是多少?
。1)思考:這是一個不規(guī)則的立體圖形,要求它的體積,它不能像瓶子里的水一樣可以流動變形轉(zhuǎn)化,怎么辦?
。2)討論方法:
A.重疊:假設(shè)把兩個大小一樣的斜截體拼成一個底面周長為9.42厘米,高為(4+6)厘米的圓柱,這個立體圖形的體積是新圓柱體積的一半。
B.切割:把這個立體圖形分為兩部分,下面是一個底面周長為9.42厘米,高為4厘米的圓柱體,上面是一個高為(6-4)厘米的圓柱斜截體,且體積是高為(6-4)厘米的圓柱體積的一半。
。3)用自己認(rèn)可的方法計算,并進(jìn)行反饋。
解法一:3.14×(9.42÷3.14÷2)2×10÷2=35.325(立方厘米)。
解法二: 3.14×(9.42÷3.14÷2)2×4+3.14×(9.42÷3.14÷2)2×2÷2=35.325(立方厘米)。
(4)反饋小結(jié):可以有不同的轉(zhuǎn)化方法來解決問題。
【設(shè)計意圖】不滿足于一種方法的轉(zhuǎn)化,展示多種方法,開拓學(xué)生的思維。
(四)全課總結(jié),提升認(rèn)識
教師:回憶一下,今天這節(jié)課有什么收獲?
教師和學(xué)生共同小結(jié):求不規(guī)則的立體圖形的體積可以將它轉(zhuǎn)化成為規(guī)則的立體圖形,這節(jié)課我們主要是將不規(guī)則的立體圖形轉(zhuǎn)化成為圓柱,用圓柱的體積計算方法來解決問題。
在解決問題時,主要要弄清楚轉(zhuǎn)化前后兩部分之間的關(guān)系。
【設(shè)計意圖】通過小結(jié),讓學(xué)生自主地對回顧本課所學(xué)知識進(jìn)行梳理總結(jié),通過歸納與提煉,讓學(xué)生明確轉(zhuǎn)化思想在數(shù)學(xué)學(xué)習(xí)中的重要性。
《圓柱的體積》教學(xué)設(shè)計7
教學(xué)目標(biāo):
1、通過教學(xué),使學(xué)生經(jīng)歷觀察、猜想、操作、驗證、交流和歸納等數(shù)學(xué)活動過程,探索并掌握圓柱的體積公式,初步學(xué)會應(yīng)用公式計算圓柱的體積,并解決相關(guān)的簡單實際問題;
2、使學(xué)生在活動中進(jìn)一步體會“轉(zhuǎn)化”方法的價值,培養(yǎng)應(yīng)用已有知識解決新問題的能力。
3、培養(yǎng)學(xué)生初步的空間概念、動手能力、操作能力和邏輯思維推理能力。
教學(xué)重點:
掌握和運(yùn)用圓柱體積計算公式進(jìn)行正確計算。
教學(xué)難點:
理解圓柱體積計算公式的推導(dǎo)過程,體會“轉(zhuǎn)化”方法的價值。
教學(xué)準(zhǔn)備:
1、用于演示把圓柱體積轉(zhuǎn)化成長方體體積的教具。
2、多媒體課件。
教學(xué)過程:
一、復(fù)習(xí)導(dǎo)入、揭示課題
談話:前幾節(jié)課我們已經(jīng)認(rèn)識了圓柱體,學(xué)會了計算圓柱的側(cè)面積、底面積和表面積,今天這節(jié)課我們繼續(xù)來研究圓柱的體積。同學(xué)們回憶一下,什么叫體積?(指名回答,生:物體所占空間的大小叫做體積。)我們學(xué)會計算哪些立體圖形的體積呢?(指名學(xué)生回答,教師演示課件。根據(jù)學(xué)生的回答,板書:長方體的體積=底面積×高)
1、呈現(xiàn)長方體、正方體和圓柱的直觀圖。
2、揭題:老師為大家準(zhǔn)備了長方體、正方體、圓柱。其中我們學(xué)過了長方體和正方體的體積計算方法。大家想不想知道圓柱體的體積計算方法?今天我們一起來探索圓柱體積的計算方法。(板書課題:圓柱的體積)
3、教師:在研究這個問題之前,我們先來復(fù)習(xí)一下,圓的面積是怎樣計算的呢?圓的面積計算公式是怎樣推導(dǎo)出來的?(學(xué)生:把一個圓,平均分成若干個扇形,拼成一個近似長方形,長方形的長相當(dāng)于圓周長的一半,寬相當(dāng)于圓的半徑。)根據(jù)學(xué)生的敘述,教師課件演示。
二、自主探究,精講點撥
1、教師:那么今天我們要研究的圓柱的體積,能不能也像剛才圓的面積公式推導(dǎo)過程一樣,轉(zhuǎn)化成我們學(xué)過的立體圖形,推導(dǎo)出計算圓柱體積的公式呢?
2、學(xué)生小組討論、交流。
教師:同學(xué)們自己先在小組里討論一下
。1)你準(zhǔn)備把圓柱體轉(zhuǎn)化成什么立體圖形?
。2)你是怎樣轉(zhuǎn)化成這個立體圖形的?
。3)轉(zhuǎn)化以后的立體圖形和圓柱體之間有什么關(guān)系?
3、推導(dǎo)圓柱體積公式。
學(xué)生交流,教師動畫演示。
。1)把圓柱體轉(zhuǎn)化成長方體。
(2)怎樣轉(zhuǎn)化成長方體呢?(指名敘述:把圓柱體底面分成平均分成若干個扇形(例如分成16份),然后把圓柱切開,拼成一個近似長方體。)你會操作嗎?(學(xué)生演示教具)
。3)教師說明:底面扇形平均分的份數(shù)越多,拼成的立體圖形就越接近長方體。
。4)教師:這個長方體與圓柱體比較一下,什么變了?什么沒變?(生:形狀變了,體積大小沒變。)
(5)推導(dǎo)圓柱體積公式。
討論:切拼成的長方體與圓柱體有什么關(guān)系?(學(xué)生回答:切拼成的長方體的體積相當(dāng)于圓柱的體積,長方體的底面積相當(dāng)于圓柱體的底面積,長方體的.高相當(dāng)于圓柱體的高。教師根據(jù)學(xué)生回答演示課件。)
教師:圓柱的體積怎樣計算?用字母公式,怎樣表示?板書:
圓柱的體積 = 底面積×高
V = S h
三、運(yùn)用公示,解決問題
教師:根據(jù)圓柱體積的計算公式,如果要求圓柱的體積,你必須知道哪些條件就可以求?
、僦缊A柱的底面積和高,可以求圓柱的體積。
練習(xí)七的第1題:填表。
、谥缊A柱的底面半徑和高,可以求圓柱的體積。
試一試。
、壑缊A柱的底面積直徑和高,可以求圓柱的體積。
練一練的第1題:計算下面各圓柱的體積。
、苤缊A柱的底面周長和高,可以求圓柱的體積。
一根圓柱形零件,底面周長是12.56厘米,長是10厘米,它的體積是多少?
四、遷移應(yīng)用,質(zhì)疑反饋。
1、判斷正誤,對的畫“√”,錯誤的畫“×”。
2、計算下面各圓柱的體積。
3、智慧屋:已知一個圓柱的側(cè)面積為37.68平方厘米,底面半徑為3厘米,求這個圓柱的體積。
五、全課小結(jié)。
這節(jié)課我們一起學(xué)習(xí)了運(yùn)用轉(zhuǎn)化的方法推導(dǎo)出圓柱體積的計算公式,并且能夠運(yùn)用圓柱體積的計算公式解決一些實際問題。在今后的學(xué)習(xí)中,特別提醒大家一定正確計算出圓柱的體積,并且能靈活運(yùn)用圓柱的體積計算公式。
六、作業(yè)布置:
完成作業(yè)紙上的習(xí)題
教學(xué)反思
本節(jié)可的教學(xué)內(nèi)容是九年義務(wù)教育蘇教版六年級下冊的《圓柱的體積》,以前教學(xué)此內(nèi)容時,直接告訴學(xué)生:圓柱的體積=底面積×高,用字母表示公式:V=Sh,讓學(xué)生套公式練習(xí);我教此內(nèi)容時,不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:
一、學(xué)生學(xué)到了有價值的知識。
學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說出來的這樣的知識具有個人意義,理解更深刻。
二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。
新課程改革明確提出要“強(qiáng)調(diào)讓學(xué)生通過實踐增強(qiáng)探究和創(chuàng)新意識,學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動手實踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。
三、促進(jìn)了學(xué)生的思維發(fā)展。
傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。
而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進(jìn)了學(xué)生的思維發(fā)展。
不足之處是:
1、
2、 留給學(xué)生自由討論、實踐和思考的時間較少。 教學(xué)時教師語言過于平緩,沒有調(diào)動起學(xué)生的積極性。
《圓柱的體積》教學(xué)設(shè)計8
教學(xué)內(nèi)容:
蘇教版義務(wù)教育教科書《數(shù)學(xué)》六年級下冊第18-19頁練習(xí)三第10—16題,思考題以及動手做。
教學(xué)目標(biāo):
1.通過知識梳理、交流展示等,使學(xué)生進(jìn)一步理解圓柱表面積和體積的區(qū)別,能選擇恰當(dāng)?shù)姆椒ń鉀Q問題,在浸沒實驗中,能測算出不規(guī)則物體的體積,積累活動經(jīng)驗,提升實驗素養(yǎng)。
2.使學(xué)生經(jīng)歷觀察、操作、比較、分析、估計、類比、歸納等活動過程,培養(yǎng)學(xué)生初步的比較、分析、綜合、抽象、概括,以及簡單的判斷、推理能力,提高轉(zhuǎn)化的意識和能力,發(fā)展數(shù)學(xué)思考,增強(qiáng)空間觀念。
3.通過豐富的數(shù)學(xué)學(xué)習(xí)活動,使學(xué)生進(jìn)一步體會數(shù)學(xué)與生活的聯(lián)系,感受立體圖形學(xué)習(xí)的價值,提高數(shù)學(xué)學(xué)習(xí)的興趣和學(xué)好數(shù)學(xué)的信心。
教材分析:
圓柱和圓錐這部分內(nèi)容是學(xué)生認(rèn)識了圓,掌握了長方體和正方體的形狀特征以及表面積與體積計算方法的基礎(chǔ)上編排,是小學(xué)數(shù)學(xué)最后教學(xué)的形體知識。與長方體、正方體一樣,圓柱也是基本的幾何形體,在日常生活和生產(chǎn)勞動中經(jīng)常能夠看到。教學(xué)圓柱能夠擴(kuò)大學(xué)生認(rèn)識幾何形體的范圍,豐富對形體的認(rèn)識,有利于解決更多的實際問題。教學(xué)圓柱,也能夠豐富學(xué)生認(rèn)識幾何形體的活動經(jīng)驗,深入理解體積的意義,有利于完善認(rèn)知結(jié)構(gòu),發(fā)展空間觀念,有利于轉(zhuǎn)化能力和推理能力的進(jìn)一步提高。
學(xué)情分析:
學(xué)生在過去的學(xué)習(xí)中已經(jīng)積累了十分豐富的圖形與幾何的學(xué)習(xí)經(jīng)驗,特別是圓面積的計算方法,長方體、正方體、圓柱和圓錐的特征,長方體、正方體和圓柱的表面積和體積的計算方法等知識的探索過程,以及在這些過程中獲得的學(xué)習(xí)經(jīng)驗和方法,都為本課圓柱體積的綜合練習(xí)奠定了堅實的基礎(chǔ)。本節(jié)課,學(xué)生通過知識梳理、交流展示等活動,可以進(jìn)一步理解圓柱表面積和體積的區(qū)別,并能選擇恰當(dāng)?shù)姆椒ń鉀Q問題,發(fā)展數(shù)學(xué)思考,增強(qiáng)空間觀念,進(jìn)一步體會數(shù)學(xué)與生活的聯(lián)系,感受立體圖形學(xué)習(xí)的價值,提高數(shù)學(xué)學(xué)習(xí)的興趣和學(xué)好數(shù)學(xué)的信心。
設(shè)計理念:
從以教定學(xué),到以學(xué)定教,再到由學(xué)轉(zhuǎn)教。學(xué)習(xí)金字塔理論告訴我們:最好的學(xué)習(xí)是講給別人聽,隨著教學(xué)改革的不斷推進(jìn),我們從“以教定學(xué)”走向了“以學(xué)定教”,以學(xué)定教,呼喚教育教學(xué)回到學(xué)生的真實學(xué)情、現(xiàn)實認(rèn)知水平等方面上來,根據(jù)學(xué)生的“學(xué)”,設(shè)計教師的.“教”,日益凸顯了教師是組織者、引導(dǎo)者、合作者的角色定位。葉圣陶先生說過,“教是為了不教”,賦予“以學(xué)定教”更多的生長意義,我們在不知不覺中,從“以學(xué)定教”轉(zhuǎn)向了“由學(xué)轉(zhuǎn)教”,即由學(xué)生的學(xué)轉(zhuǎn)為由學(xué)生來教的更高級的學(xué)習(xí)生態(tài)。教學(xué)方式的改變讓我們更加明確了學(xué)習(xí)的意義。
重點難點:
教學(xué)重點:用圓柱的表面積和體積公式解決實際問題。教學(xué)難點:合理分析問題并選擇恰當(dāng)算法,增強(qiáng)空間觀念。
教學(xué)準(zhǔn)備:
教師準(zhǔn)備:反饋器一套;希沃白板、課件及5塊互動大屏;投影儀;兩份合作學(xué)習(xí)(實驗)單;板貼一套等。
學(xué)生準(zhǔn)備:底面被平均分成16份的圓柱形學(xué)具16套;知識梳理圖50張;預(yù)學(xué)單50張;圓柱形容器及土豆或鐵塊若干等。
《圓柱的體積》教學(xué)設(shè)計9
教材簡析:
本節(jié)內(nèi)容包括圓柱的體積計算公式的推導(dǎo),利用公式直接計算圓柱的體積,利用公式求:圓柱形物體的容積,第十一冊圓柱的體積公開課。教材充分利用學(xué)生學(xué)過的知識作鋪墊,采用遷移法,引導(dǎo)學(xué)生將圓柱體化成已學(xué)過的立體圖形,再通過觀察、比較找兩個圖形之間的關(guān)系,可推導(dǎo)出圓柱的體積計算公式。
教學(xué)目的:
1、運(yùn)用遷移規(guī)律,引導(dǎo)學(xué)生借助因面積計算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計算公式,并理解這個過程。
2.會用圓柱的體積計算圓柱形物體的體積和容積,運(yùn)用公式解決一些簡單的問題。
3.引導(dǎo)學(xué)生逐步學(xué)會轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)法,培養(yǎng)學(xué)生解決實際問題的能力
4.借助實物演示,培養(yǎng)學(xué)生抽象、概括的思維能力。
教 具:圓柱的體積公式演示教具,多媒體課件
教學(xué)過程:
一、情景引入
1、出示圓柱形水杯。
。1)老師在杯子里面裝滿水,想一想,水杯里的水是什么形狀的?(2)你能用以前學(xué)過的方法計算出這些水的體積嗎?
。3)討論后匯報:把水倒入長方體容器中,量出數(shù)據(jù)后再計算。(4)說一說長方體體積的計算公式。
2、創(chuàng)設(shè)問題情景。(課件顯示)
如果要求壓路機(jī)圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?剛才的方法不是一種普遍的方法,那么在求圓柱體積的時候,有沒有像求長方體或正方體體積那樣的計算公式呢?
今天,我們就來一起研究圓柱體積的計算方法。(出示課題:圓柱的體積)(設(shè)計意圖:問題是思維的動力。通過創(chuàng)設(shè)問題情景,可以引導(dǎo)學(xué)生運(yùn)用已有的生活經(jīng)驗和舊知,積極思考,去探索和解決實際問題,并能制造認(rèn)知沖突,形成"任務(wù)驅(qū)動"的探究氛圍。)
二、新課教學(xué):
設(shè)疑揭題:我們能把一個圓采用化曲為直、化圓為方的方法推導(dǎo)出了圓面積的計算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學(xué)過的立體圖形來求它的體積呢?今天我們一起來探討這個問題。板書課題:圓柱的體積。
1.探究推導(dǎo)圓柱的體積計算公式。
課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成32份、64份……),讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。C、依次解決上面三個問題。①把圓柱拼成長方體后,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積) ②拼成的長方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應(yīng)的部位,并板書相應(yīng)的內(nèi)容。)③圓柱的體積=底面積×高 字母公式是V=Sh(板書公式)
討論并得出結(jié)果。你能根據(jù)這個實驗得出圓柱的體積計算公式嗎?為什么?讓學(xué)生再討論:圓柱體通過切拼,圓柱體轉(zhuǎn)化成近似的 體。這個長方體的底面積與圓柱體的底面積 ,這個長方體的高與圓柱體的高 。因為長方體的體積等于底面積乘以高,所以,圓柱體的體積計算公式是: 。(板書:圓柱的體積=底面積×高)用字母表示: 。(板書:V=Sh)(設(shè)計意圖:在新課教學(xué)中,先讓學(xué)生通過復(fù)習(xí)舊知識,在觀察中理解,在比較中歸納,通過這些措施可以使學(xué)生切實經(jīng)歷圓柱體積公式充分體現(xiàn)了教師的主導(dǎo)作用和學(xué)生的主體作用,小學(xué)數(shù)學(xué)教案《第十一冊圓柱的體積公開課》。這樣的教學(xué),不僅有利于學(xué)生理解算理,掌握算法,而且在公式的推導(dǎo)過程中,領(lǐng)悟了學(xué)習(xí)方法,培養(yǎng)了學(xué)生的學(xué)習(xí)能力、抽象概括能力和邏輯思維能力)
要用這個公式計算圓柱的體積必須知道什么條件?
填表:請同學(xué)看屏幕回答下面問題,
底面積(㎡)高(m)圓柱體積(m3)
63
0.58
52
。ㄔO(shè)計意圖:設(shè)計練習(xí)能使學(xué)生達(dá)到舉一反三的效果,從而訓(xùn)練學(xué)生的技能。這是第一層基本練習(xí),通過這道題可以使學(xué)生更好的掌握本課重點,夯實基礎(chǔ)知)
例:一個圓柱形油桶,底面內(nèi)直徑是6分米,高是7分米.它的容積約是多少立方分米?(得數(shù)保留整立方分米)
解: d=6dm,h=7dm.r=3dm
S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)
V =S底h =28.26×7 =197.82198dm3 答:油桶的容積約是198立方分
。ㄔO(shè)計意圖:使學(xué)生注意解題格式,注意體積的單位為三次方)
三.鞏固反饋
1.求下面圓柱體的體積。(單位:厘米)
同學(xué)板演,其余同學(xué)在作業(yè)本上做。板演的同學(xué)講解自己的解題方法題,教師歸納學(xué)生所用的解題方法,強(qiáng)調(diào)在解題的過程中格式。(設(shè)計意圖:這是第二層變式練習(xí)。是讓學(xué)生在掌握公式的基礎(chǔ)上理解公式,學(xué)會靈活運(yùn)用公式的訓(xùn)練題。通過對公式的拓展性理解,可以進(jìn)一步加深學(xué)生對圓柱體積公式的.理解和掌握,同時也能培養(yǎng)學(xué)生的邏輯思維能力。)
練習(xí):(回到想一想中) 圓柱形水杯的底面直徑是10cm,高是15cm.已知水杯中水的體積是整個水杯體積的 2/3 計算水杯中水的體積?
(設(shè)計意圖:這是第三層發(fā)展性練習(xí),安排了密切聯(lián)系生活實際的習(xí)題,讓學(xué)生運(yùn)用公式解決引入環(huán)節(jié)中的兩個問題,切實體驗到數(shù)學(xué)就存在于自己的身邊。)
四.拓展練習(xí)
1.一個長方形的紙片長是6分米,寬4分米.用它分別圍成兩個圓柱體,A是用4分米做底高6分米,B是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由.(結(jié)果保留π)
2.一個底面直徑是20cm的圓柱形容體里,放進(jìn)一個不規(guī)則的鑄鐵零件后,容體里的水面升高4cm,求這鑄鐵零件的體積是多少?、
。ㄔO(shè)計意圖:安排了密切聯(lián)系生活實際的習(xí)題,讓學(xué)生運(yùn)用公式解決引入環(huán)節(jié)中的兩個問題,使學(xué)生認(rèn)識到數(shù)學(xué)的價值體驗到數(shù)學(xué)對于了解周圍世界和解決實際問題是非常有作用的;能使學(xué)生的思維處于積極的狀態(tài)達(dá)到培養(yǎng)學(xué)生思維的靈活性和創(chuàng)造性解決問題能力的目的。)
五.課堂小結(jié):
1.談?wù)勥@節(jié)課你有哪些收獲。
2.解題時需要注意那些方面。
。ㄔO(shè)計意圖:收獲包括知識、能力、方法、情感等全方位的體會,在這里采用提問式小結(jié),使學(xué)生暢談收獲、發(fā)現(xiàn)不足,既能訓(xùn)練學(xué)生的語言表達(dá)能力,又能培養(yǎng)學(xué)生的歸納概括能力;同時通過對本節(jié)所學(xué)知識的總結(jié)與回顧,還能使學(xué)生學(xué)到的知識系統(tǒng)化、完整化。)
六.布置作業(yè)
1.A冊習(xí)題2.7
2.拓展練習(xí)2題
教學(xué)反思:
本節(jié)課的教學(xué)體現(xiàn)了:一、利用遷移規(guī)律引入新課,為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境;二、遵循學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生觀察、思考、說理,調(diào)動多種感觀參與學(xué)習(xí);三、正確處理"兩主"關(guān)系,充分發(fā)揮學(xué)生的主體作用,注意學(xué)生學(xué)習(xí)的參與過程及知識的獲取過程,學(xué)生積極性高,學(xué)習(xí)效果好。達(dá)到預(yù)期效果,不足處學(xué)生討論時間控制太少,課后作業(yè)個別學(xué)生還是對公式不會靈活應(yīng)用。
《圓柱的體積》教學(xué)設(shè)計10
教學(xué)目標(biāo)
1、理解圓柱體體積公式的推導(dǎo)過程,掌握計算公式。
2、會運(yùn)用公式計算圓柱的體積。
教學(xué)重點
圓柱體體積的計算。
教學(xué)難點
理解圓柱體體積公式的推導(dǎo)過程。
教學(xué)過程
一、復(fù)習(xí)準(zhǔn)備
。ㄒ唬┙處熖釂
1、什么叫體積?怎樣求長方體的體積?
2、圓的面積公式是什么?
3、圓的面積公式是怎樣推導(dǎo)的?
。ǘ┱勗拰(dǎo)入
同學(xué)們,我們在研究圓面積公式的推導(dǎo)時,是把它轉(zhuǎn)化成我們學(xué)過的長方形知識的來解決的。那圓柱的體積怎樣計算呢?能不能也把它轉(zhuǎn)化成我們學(xué)過的立體圖形來計算呢?這節(jié)課我們就來研究這個問題。(板書:圓柱的體積)
二、新授教學(xué)
(一)教學(xué)圓柱體的體積公式。(演示動畫“圓柱體的體積1”)
1、教師演示
把圓柱的底面分成了16個相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積大小相等,底面是扇形的形體。
2、學(xué)生利用學(xué)具操作。
3、啟發(fā)學(xué)生思考、討論:
。1)圓柱體切開后可以拼成一個什么形體?(近似的長方體)
。2)通過剛才的實驗?zāi)惆l(fā)現(xiàn)了什么?
、倨闯傻慕频拈L方體和圓柱體相比,體積大小沒變,形狀變了。
、谄闯傻慕频拈L方體和圓柱體相比,底面的形狀變了,由圓變成了近似的長方形,而底面的面積大小沒有發(fā)生變化。
、劢崎L方體的高就是圓柱的高,沒有變化。
4、學(xué)生根據(jù)圓的面積公式推導(dǎo)過程,進(jìn)行猜想。
(1)如果把圓柱的底面平均分成32份,拼成的長方體形狀怎樣?
。2)如果把圓柱的底面平均分成64份,拼成的`長方體形狀怎樣?
。3)如果把圓柱的底面平均分成128份,拼成的長方體形狀怎樣?
5、啟發(fā)學(xué)生說出通過以上的觀察,發(fā)現(xiàn)了什么?
(1)平均分的份數(shù)越多,拼起來的形體越近似于長方體。
。2)平均分的份數(shù)越多,每份扇形的底面就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體。
6、推導(dǎo)圓柱的體積公式
(1)學(xué)生分組討論:圓柱體的體積怎樣計算?
。2)學(xué)生匯報討論結(jié)果,并說明理由。
因為長方體的體積等于底面積乘高。(板書:長方體的體積=底面積×高)近似長方體的體積等于圓柱的體積,(板書:圓柱的體積),近似長方體的底面積等于圓柱的底面積,(板書:底面積)近似長方體的高等于圓柱的高,(板書:高)所以圓柱的體積等于底面積乘高。(板書:圓柱的體積=底面積×高)
。3)用字母表示圓柱的體積公式。(板書:V=Sh)
。ǘ┙虒W(xué)例4。
1。出示例4
例4。一根圓柱形鋼材,底面積是50平方厘米,高是2.1米,它的體積是多少?
2.1米=210厘米
50×210=10500(立方厘米)
答:它的體積是10500立方厘米。
2。反饋練習(xí)
。1)一根圓柱形木料,底面積是75平方厘米,長90厘米,它的體積是多少?
(2)一個圓柱形罐頭盒的內(nèi)底面半徑是5厘米,高15厘米,它的容積是多少?
。ㄈ┙虒W(xué)例5。
1、出示例5
例5、一個圓柱形水桶,從里面量底面直徑是20厘米,高是25厘米,這個水桶的容積是多少立方分米?
水桶的底面積:
=3.14×
。3.14×100
。314(平方厘米)
水桶的容積:
314×25
=7850(立方厘米)
。7.8(立方分米)
答:這個水桶的容積大約是7.8立方分米。
三、課堂小結(jié)
通過本節(jié)課的學(xué)習(xí),你有什么收獲?
1、圓柱體體積公式的推導(dǎo)方法。
2、公式的應(yīng)用。
四、課堂練習(xí)
。ㄒ唬┨畋
底面積S(平方米)
高h(yuǎn)(米)
圓柱的體積V(立方米)
15
3
6.4
4
《圓柱的體積》教學(xué)設(shè)計11
教學(xué)內(nèi)容:
青教版九年義務(wù)教育六年制小學(xué)數(shù)學(xué)六年級下冊第23—28頁。
教材簡析:
該信息窗呈現(xiàn)的是圓柱和圓錐形狀的冰淇淋盒,并分別標(biāo)出了它們的底面直徑和高。引導(dǎo)學(xué)生提出問題,引入對圓柱、圓錐體積計算的探索和學(xué)習(xí)。“合作探索”中第一個紅點部分是學(xué)習(xí)圓柱的體積。
教學(xué)目標(biāo):
1、結(jié)合具體情境,通過探索與發(fā)現(xiàn),理解并掌握圓柱并能解決簡單的實際問題。
2、經(jīng)歷探索圓柱計算公式的過程,進(jìn)一步發(fā)展空間觀念。
3、在觀察與實驗、猜測與驗證、交流與反思等活動中,初步體會數(shù)學(xué)知識的產(chǎn)生、形成與發(fā)展的過程,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,初步了解并掌握一些數(shù)學(xué)思想方法。
教學(xué)重點和難點:
圓柱、圓錐體積的計算方法,以及體積公式的探索推導(dǎo)過程。
教具準(zhǔn)備:
多媒體課件、圓柱體積學(xué)具、沙子等。
第一課時
教學(xué)過程:
一、創(chuàng)設(shè)情境,激趣引入。
談話:同學(xué)們,天氣漸漸熱了,在夏季同學(xué)們最喜歡的冷飲是什么?(生回答)
課件出示:兩個圓柱體冰淇淋。
談話:看,小明買了兩個冰淇淋,你能猜猜哪種包裝盒體積大嗎?
。ㄉ聹y)這節(jié)課我們就來研究圓柱的體積。(板書課題——圓柱體的體積。)
設(shè)計意圖:
從生活中常見的例子導(dǎo)入新課,從中培養(yǎng)學(xué)生在生活中發(fā)現(xiàn)數(shù)學(xué)問題、提出問題的意識。學(xué)生的猜測為后面的實驗驗證做好了鋪墊,激發(fā)學(xué)生探究新知的欲望。
二、回憶舊知,實現(xiàn)遷移。
談話:怎樣求圓柱的體積呢?我們也許能從以前研究問題的方法里得到啟示,找到解決問題的辦法。請大家想一想,在學(xué)習(xí)圓的面積時,我們是怎樣推導(dǎo)出圓的面積計算公式的?
。▽W(xué)生回答后,教師利用多媒體課件動態(tài)演示把圓等分切割,拼成一個近似的`長方形,找出圓與所拼成的長方形之間的關(guān)系,進(jìn)而推導(dǎo)出圓面積計算公式的過程。)
設(shè)計意圖:
通過回顧圓的面積的推導(dǎo)方法,巧妙地運(yùn)用舊知識進(jìn)行遷移。
三、利用素材,探索新知。
、褰涣鞑聹y
談話:通過剛才的回顧,你們能想辦法將圓柱轉(zhuǎn)化成我們已經(jīng)學(xué)過的立體圖形來求體積嗎?
生:我們學(xué)過長方體的體積,可不可以將圓柱轉(zhuǎn)化成長方體呢?
師談話:你的想法很好,怎樣轉(zhuǎn)化呢?
生討論,交流。
生匯報,可能會有以下幾種想法:
1、先在圓柱的底面上畫一個最大的正方形,再豎著切掉四周,得到一個長方體,然后把切下的四塊拼在一起。
2、可以把圓柱的底面分成許多相同的扇形,然后豎著切開,重新拼一拼。
3、如果是橡皮泥那樣的,可以把它重新捏成一個長方體,就能計算出它的體積了。
談話:請同學(xué)討論和評價一下,哪一種方法更合理呢?引導(dǎo)學(xué)生按照第二種方法進(jìn)行驗證。
、鎸嶒烌炞C
學(xué)生動手進(jìn)行實驗。
談話:請每個小組拿出學(xué)具,按照剛才第3小組的方法把它轉(zhuǎn)化為近似的長方體,并研究轉(zhuǎn)化后的長方體和原來圓柱體積、底面積、高之間的關(guān)系。
學(xué)生合作操作,集體研究、討論、記錄。
設(shè)計意圖本環(huán)節(jié)讓學(xué)生親自動手 操作,再次感受“化圓為方”的思想。動手操作,是學(xué)生發(fā)現(xiàn)規(guī)律和獲取數(shù)學(xué)思想的重要途徑。
四、分析關(guān)系,總結(jié)公式
1、全班交流
談話:哪個小組愿意展示一下你們小組的研究結(jié)果?
引導(dǎo)學(xué)生發(fā)現(xiàn):
轉(zhuǎn)化后的形狀變了,但是體積沒有變,底面的面積沒有變,高也沒有變。
2、分析關(guān)系
引導(dǎo)說出:圓柱體轉(zhuǎn)化成長方體后,雖然形狀變了,但是長方體的體積和原來圓柱的體積相等,長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的高。
3、總結(jié)公式。
談話:同學(xué)們真了不起!你們的發(fā)現(xiàn)非常正確。我們來看一看課件演示。
(課件分別演示將圓柱等分成16份、32份、64份的割拼過程,學(xué)生觀察、思考。)
談話:你發(fā)現(xiàn)了什么?
引導(dǎo)觀察:分的份數(shù)越多,拼成的圖形就越接近長方體。
。ㄕn件動態(tài)演示:圓柱的高——長方體的高,圓柱的底面積——長方體的底面積。)
談話:其實大家剛才又采用了“化圓為方”的方法將圓柱轉(zhuǎn)化成了長方體。你現(xiàn)在能總結(jié)出圓柱體積的計算公式嗎?說一說你是怎樣想的。
根據(jù)學(xué)生的回答教師板書:
長方體的體積 = 底面積 × 高
圓柱的體積 = 底面積 × 高
談話:你能用字母表示圓柱的體積計算公式嗎?V=Sh
設(shè)計意圖教師給予適當(dāng)?shù)难菔,溝通圓面積計算公式的推導(dǎo)方法與圓柱體積計算公式推導(dǎo)方法的共同點——轉(zhuǎn)化法,便于學(xué)生順利推導(dǎo)出圓柱體積的計算公式。
五、利用公式,解決問題。
自主練習(xí)第1題、第2題、第3題
設(shè)計意圖鞏固練習(xí)及時讓學(xué)生利用結(jié)論解決問題,感受自己研究的重要價值,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
六、課堂總結(jié)
《圓柱的體積》教學(xué)設(shè)計12
【學(xué)習(xí)目標(biāo)】
1、探索并掌握圓柱的體積計算公式。
2、能運(yùn)用公式計算圓柱的體積,并解決實際問題。
【學(xué)習(xí)過程】
一、板書課題
師:同學(xué)們,今天我們來學(xué)習(xí)“圓柱的體積”(板書課題)。
二、出示目標(biāo)
本節(jié)課我們的目標(biāo)是:(出示)
1、探索并掌握圓柱的體積計算公式。
2、能運(yùn)用公式計算圓柱的體積,并解決實際問題。
了達(dá)到目標(biāo),下面請大家認(rèn)真地看書。
三、出示自學(xué)指導(dǎo)
認(rèn)真看課本第19頁到第20頁的例5和例6的內(nèi)容,重點看圓柱體積公式的推導(dǎo)過程和例6解題過程,想:
1、圓柱的體積公式是如何推導(dǎo)出來的?
2、圓柱的體積計算公式是什么?用字母如何表示?
5分鐘后,比誰能做對檢測題!
師:認(rèn)真看書自學(xué),比誰自學(xué)的最認(rèn)真,自學(xué)效果最好。下面自學(xué)競賽開始。
四、先學(xué)
。ㄒ唬┛磿
學(xué)生認(rèn)真看書,教師巡視,督促人人都在認(rèn)真地看書。
。ǘz測(找兩名學(xué)生板演,其余生寫在練習(xí)本上)
第20頁“做一做”和第21頁第5題。
要求:1、認(rèn)真觀察,正確書寫,每一步都要寫出來。
2、寫完的同學(xué)認(rèn)真檢查。
五、后教
。ㄒ唬└
師:寫完的同學(xué)請舉手。下面,請大家一起看黑板上這些題,發(fā)現(xiàn)問題的同學(xué)請舉手。(由差-中-好)
(二)討論
1、看第1題:認(rèn)為算式列對的請舉手?
【圓柱的體積=底面積×高】
2、看第2題:認(rèn)為算式列對的舉手?你是怎么思考的?
3、看計算過程和結(jié)果,認(rèn)為對的舉手?
4、評正確率、板書,并讓學(xué)生同桌對改。
今天你們表現(xiàn)實在是太好了,老師真為你們感到高興。老師這里有幾道練習(xí)題,敢不敢來試一試?(出示)
六、補(bǔ)充練習(xí):
1、一個圓柱形鋼材,底面積是30立方厘米,高是60厘米,體積是多少立方厘米?
2、一個圓柱體和一個長方形的體積相等,高也相等,那么它們的底面積()。
3、把一個圓柱的側(cè)面展開,得到一個正方形,圓柱的底面半徑是5厘米,這個圓柱的高是()厘米,體積是()立方厘米。.
下面,我們就來運(yùn)用今天所學(xué)的知識來做作業(yè),比誰的課堂作業(yè)能做得又對又快,字體還又端正。
七、當(dāng)堂訓(xùn)練(課本練習(xí)三,第21頁)
作業(yè):第3、4、7、8題寫作業(yè)本上
練習(xí):第1題寫書上,第2、6、9、10題寫練習(xí)本上
八、板書設(shè)計
課題三:圓柱的體積
圓柱的體積=底面積×高
課后反思:
本節(jié)課的教學(xué)內(nèi)容是九年義務(wù)教育六年級下冊的《圓柱的體積》,我教此內(nèi)容時,不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:
一、學(xué)生學(xué)到了有價值的知識。
學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說出來的這樣的知識具有個人意義,理解更深刻。
二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。
新課程改革明確提出要“強(qiáng)調(diào)讓學(xué)生通過實踐增強(qiáng)探究和創(chuàng)新意識,學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動手實踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。
三、促進(jìn)了學(xué)生的.思維發(fā)展。
傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進(jìn)了學(xué)生的思維發(fā)展。
本節(jié)課采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:由于學(xué)生自由討論、實踐和思考的時間較多,練習(xí)的時間較少。
《圓柱的體積》教學(xué)設(shè)計13
《圓柱的體積》是青島版標(biāo)準(zhǔn)實驗數(shù)學(xué)課本第十二冊第二單元《圓柱和圓錐》中信息窗3的內(nèi)容,它包括圓柱體的體積計算公式的推導(dǎo)和運(yùn)用公式計算圓柱的體積。教材充分利用學(xué)生學(xué)過的知識作鋪墊,采用遷移法,引導(dǎo)學(xué)生將圓柱體轉(zhuǎn)化成已學(xué)過的立體圖形,再通過觀察、比較找出兩個圖形之間的關(guān)系,來推導(dǎo)出圓柱的體積計算公式。《圓柱和圓錐》這一單元是小學(xué)階段學(xué)習(xí)幾何形體知識的最后部分,是幾何知識的綜合運(yùn)用。在此之前,學(xué)生已掌握了一定的幾何知識與數(shù)學(xué)方法,部分學(xué)生思維活躍,數(shù)學(xué)成績較好,加上“圓的面積公式”的推導(dǎo)的學(xué)習(xí),輔以多媒體的教學(xué),學(xué)生應(yīng)該容易完成圓柱體體積計算公式的推導(dǎo)過程,為今后學(xué)習(xí)復(fù)雜的形體知識打下扎實的基礎(chǔ)
[教學(xué)目的]
1、運(yùn)用遷移規(guī)律,引導(dǎo)學(xué)生借助圓面積計算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計算公式,并理解其推導(dǎo)過程。
2、會用圓柱的體積計算公式計算圓柱形物體的體積或容積。
3、引導(dǎo)學(xué)生逐步學(xué)會轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)方法,培養(yǎng)學(xué)生解決實際問題的能力。
4、借助遠(yuǎn)程教育的課件資源演示,培養(yǎng)學(xué)生抽象、概括的思維能力。
[教學(xué)重難點]
圓柱體體積計算公式的推導(dǎo)過程
[設(shè)計理念及策略]
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“有效的數(shù)學(xué)學(xué)習(xí)活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式!奔匆笪覀冊诮虒W(xué)中,要讓學(xué)生通過自主的知識建構(gòu)活動,學(xué)生的潛能得以開發(fā),情感、態(tài)度、價值觀得以培養(yǎng),從而提高學(xué)生的數(shù)學(xué)素養(yǎng)。因此根據(jù)本節(jié)課內(nèi)容的特點,這節(jié)課的教學(xué)將通過對圓柱體積知識的探究,重點培養(yǎng)學(xué)生探究數(shù)學(xué)知識的能力和方法。為了把“一切為了學(xué)生的發(fā)展”這一新的教學(xué)理念融入到了課堂教學(xué)之中。在課堂教學(xué)中將以學(xué)生的活動為主,讓學(xué)生通過親身體驗、實際操作來找出數(shù)學(xué)知識之間的內(nèi)在聯(lián)系。在學(xué)生學(xué)習(xí)過程中,充分運(yùn)用了遠(yuǎn)程教育資源中動畫、聲音、視頻文件,并進(jìn)行了有效地整合。本節(jié)課將使用以下策略:
1、利用遷移規(guī)律引入新課,借助遠(yuǎn)程資源為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境。
2、以合作探究為主要的學(xué)習(xí)方式,充分發(fā)揮學(xué)生的自主性,體現(xiàn)學(xué)生的主體地位。
3、練習(xí)多樣化,層次化。
4、引導(dǎo)學(xué)生把知識轉(zhuǎn)化成相應(yīng)的技能,從而提高靈活運(yùn)用的能力,培養(yǎng)學(xué)生的綜合素質(zhì)。
[教學(xué)準(zhǔn)備]
多媒體課件、圓柱體體積演示器
[教學(xué)過程]
一、回憶舊知,實現(xiàn)遷移。
1、學(xué)習(xí)圓的面積時,我們是怎樣推導(dǎo)出圓的面積計算公式的?利用多媒體課件動態(tài)演示把圓等分切割,拼成一個近似的長方形,找出圓與所拼成的長方形之間的關(guān)系,進(jìn)而推導(dǎo)出圓面積計算公式的過程。
2、計算圓的面積。
A.半徑5厘米
B.直徑6分米
二、指名說說自己想法。
教師引入:這節(jié)課我們就來研究如何將圓柱轉(zhuǎn)化成我們已經(jīng)學(xué)過的圖形來求出它的體積。(板書課題:圓柱的體積)
1、交流猜測談話:通過剛才的回顧,你們能想辦法將圓柱轉(zhuǎn)化成我們已經(jīng)學(xué)過的立體圖形來求體積嗎?怎樣轉(zhuǎn)化呢?
2、生討論,交流。
三、驗證。
教師演示:
(1)屏幕上呈現(xiàn)一個圓柱體變?yōu)橐粋長方體(圓柱與長方體等底等高)的動畫。提問:變化過程中,圓柱的什么變了(截面)?什么沒有變(高、體積)?
(2)將圓柱的底面、長方體的底面閃爍后移出來。提問:你學(xué)過將圓變成長方形嗎?
(3)再次出示圓柱形物體,動畫演示圓柱拼成近似長方體。讓學(xué)生取出圓柱體學(xué)具拼成近似長方體。
四、探索圓柱與所拼成的近似長方體之間的關(guān)系。
1、學(xué)生動手進(jìn)行實驗。請每個小組拿出學(xué)具,并研究轉(zhuǎn)化后的長方體和原來圓柱體積、底面積、高之間的關(guān)系。
2、學(xué)生利用學(xué)具獨立操作(教師巡視、指導(dǎo)操作有困難的學(xué)生),思考并討論。
3、通過剛才的實驗?zāi)惆l(fā)現(xiàn)了什么?
、倨闯傻慕崎L方體的體積與原來的圓柱體積有什么關(guān)系? ②拼成的近似長方體的底面積與原來圓柱的底面積有何關(guān)系? ③拼成的近似長方體的高與原來的圓柱的高有什么關(guān)系?
4、學(xué)生匯報交流。
五、分析關(guān)系,總結(jié)公式引導(dǎo)學(xué)生發(fā)現(xiàn)并說出:
圓柱體轉(zhuǎn)化成長方體后,雖然形狀變了,但是長方體的體積和原來圓柱的體積相等,長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的'高。 總結(jié)公式。
長方體的體積=底面積×高
圓柱的體積=底面積×高
V=Sh
六、拓展訓(xùn)練。
一個圓柱形量桶,底面半徑是5厘米,把一塊鐵塊從這個量桶里取出后,水面下降3厘米,這塊鐵塊的體積是多少?
七、課堂總結(jié)。
[附:板書設(shè)計]圓柱的體積
長方體的體積=底面積×高
圓柱的體積=底面積×高
V=Sh
[教學(xué)反思]
1、這節(jié)課是通過觀察、猜想、操作驗證、鞏固、應(yīng)用這幾個環(huán)節(jié)來完成的。學(xué)生在最佳的情景中通過實踐、探索、發(fā)現(xiàn),得到了“活”的知識,學(xué)到有價值的數(shù)學(xué)。
2、操作驗證是本節(jié)課的關(guān)鍵,為體現(xiàn)活動教學(xué)中學(xué)生“主動探索”的特點,我從問題入手,組織學(xué)生圍繞觀察猜想后展開驗證性的操作活動。學(xué)生以活動小組為單位,思維活躍,積極探索,學(xué)習(xí)能力、抽象概括能力和邏輯思維能力得到了提高。
3、充分利用媒體資源,化解難點,提高課堂效果;注重習(xí)題多樣化、層次化,拓展學(xué)生思維。
一、情景引入
1、舉起圓柱形水杯。
(1)同學(xué)們請看,這是一個什么形狀的被杯子?關(guān)于圓柱的知識你都知道哪些?生充分交流。
很好,關(guān)于圓柱你還想知道什么啊?
體積是嗎?
(2)如果,老師在杯子里面裝滿水(用水瓶在杯子里倒水,提起學(xué)生興趣),你能知道這些水的體積是多少嗎?
生充分交流
(3)討論后匯報:把水倒入長方體容器中,量出數(shù)據(jù)后再計算(求水的體積了)。評價:這個方法真好,把它轉(zhuǎn)化為求長方體的體積來求水的體積。量筒學(xué)生能說出來就說,不能就直接過去。
(那么現(xiàn)在我想知道杯子的體積,,你有什么好的方法嗎?)學(xué)生交流測量不規(guī)則物體。
同學(xué)們,是不是所有的圓柱都能用剛才的辦法求出體積呢?(出示課件壓路機(jī)柱子)。如果要求壓路機(jī)圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?
這就需要我們探究出一種適合所有圓柱體積的計算方法,這節(jié)課就讓我們一起來研究圓柱的體積(出示課題:圓柱的體積)板書課題:圓柱的體積。
二、新課教學(xué):
(1)學(xué)生猜想環(huán)節(jié)
師:大家猜想圓柱體體積和什么有關(guān)?學(xué)生交流。說出為什么?自己比劃著說,也可以用事物演示,比較高和底)
同學(xué)們的思想都很活躍,那么現(xiàn)在你們想采用什么方法去研究圓柱體體積? (萬一沒有會的,就要引:我們過去學(xué)習(xí)圖形的時候,都是通過哪些方法研究學(xué)習(xí)。轉(zhuǎn)化。)
讓我們在一起回顧一下圓形面積的推導(dǎo)過程(演示圓形的推導(dǎo)過程)
我們能把一個圓采用化曲為直、化圓為方的方法,把圓轉(zhuǎn)化為長方形,從而推導(dǎo)出了圓面積的計算公式,板書。轉(zhuǎn)化圓轉(zhuǎn)化為長方形。
(2)學(xué)生探究環(huán)節(jié)
現(xiàn)在能否采用類似的方法,將圓柱轉(zhuǎn)化成我們學(xué)過的圖形來求它的體積呢?來求出它的體積。先獨立思考,再把你的想法在組內(nèi)交流一下。讓學(xué)生說出怎么樣切割。
誰能說說該怎么分,拿出蘿卜,這就是一個圓柱,你想怎么分?亮出刀,來吧,請動手。
教具演示,一共是16份,讓我們閉著眼睛想象一下32,,64份是什么樣?(滲透極限思想,得板書出極限)抬頭看大屏幕,看看你們想的和老師分的一樣嗎?
課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成32份、64份),放到64份時,問學(xué)生,看到這里,你發(fā)現(xiàn)了什么?:分成的扇形越多,拼成的立體圖形就越接近于長方體。
那么現(xiàn)在你能探究出圓柱的體積公式了嗎?請拿出書包里的學(xué)具,同桌兩人一組,共同探究,看看哪組同學(xué)最善于觀察也最會配合。
讓學(xué)生說,結(jié)論都是學(xué)生說出來的,老師不要多話。
學(xué)生研究,上來交流,自由選擇用教具還是大屏幕。
出示課件,最后總結(jié),剛才,我們通過將圓柱轉(zhuǎn)化長方體(板書):,推導(dǎo)出了圓柱的體積公式:板書能用字母表示出來嗎?v=sh
簡直太棒了,現(xiàn)在讓我來考考大家把,看看你們能不能學(xué)以致用。
三、練習(xí)鞏固
(1)口答
(2)分層練習(xí),采用星級分等,讓學(xué)生自由選擇1到3題。星級越高,難度越大。
(3)知道體積求高的練習(xí),設(shè)計到單位的轉(zhuǎn)換。
(4)開放性題目,自己動手求一個杯子(圓柱)的體積。
教學(xué)反思:
這次送課下鄉(xiāng)的經(jīng)歷,對我來說是一次難得的鍛煉機(jī)會。這期間的備課、上課、聽評課,讓我對數(shù)學(xué)教學(xué)的一些方法性問題有了更進(jìn)一步的認(rèn)識,并且對自身存在的問題也有了更明確的了解,利于今后有針對性的進(jìn)行解決。
先來說一說我通過這次送課下鄉(xiāng),對數(shù)學(xué)教學(xué)的一些方法性認(rèn)識。首先就是“生生互動”!皫熒印痹谖业恼n堂上體現(xiàn)的應(yīng)該是比較多的,但是通過叢老師和夏主任等老師的評課,我更深刻的體會到了,現(xiàn)在的課堂更加需要的事“生生互動”。要給學(xué)生更多的話語權(quán)和自由度。這節(jié)課,其實我也嘗試了讓學(xué)生之間去交流,比如說各種小組合作,同桌合作,還有學(xué)生回答問題遇到困難的時候自己找其他同學(xué)幫助等方式,但是感覺還是停留在表層,沒有深入進(jìn)去。這點在以后的教學(xué)中應(yīng)該引以為戒。
“個教育”的初步嘗試。在課堂上,如何體現(xiàn)個教育。決定不單單是出示幾個簡單的分層練習(xí),更重要的事要有對知識點的分層,對全體學(xué)生具體學(xué)習(xí)情況的一種把握。個教育,更要求老師把握學(xué)生的實際情況,因人而異,因班而異。本節(jié)課,在探究圓柱體積公式的時候,我當(dāng)時讓學(xué)生討論了兩種方法,一種是底面積乘高,一種是底面周長一半乘高乘半徑。這樣一講,反而起到了時而其反的效果,本來學(xué)生挺明白的了,一講,反而有學(xué)生糊涂了,這是因為橋頭整體學(xué)生水平還不是太高,造成的問題。
下面我具體談?wù)剬Ρ竟?jié)課的教學(xué)設(shè)計和教學(xué)過程的一些反思:
圓柱的體積這部分知識是學(xué)生在有了圓柱、圓和長方體的相關(guān)知識基礎(chǔ)上進(jìn)行教學(xué)的。在設(shè)計教案的時候,我比較注意以下幾點:一、抓住新舊知識的聯(lián)系,利用轉(zhuǎn)化的方法,通過想象、實際操作,從經(jīng)歷和體驗中思考,讓學(xué)生自己探究出圓柱的體積計算公式。二、創(chuàng)設(shè)貼近學(xué)生生活實際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識“從生活中來到生活中去”的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和。三、設(shè)計練習(xí)的時候注重多層次問題,以及開放性問題的設(shè)計,滿足不同程度學(xué)生的需求,將練習(xí)的選擇權(quán)利放手給學(xué)生,特別是星級題目的方式,讓學(xué)生感到很新奇,激發(fā)了學(xué)生挑戰(zhàn)難題的欲望,和解決問題的熱情。四、培養(yǎng)學(xué)生問題意識!皢栴}是數(shù)學(xué)的心臟!睂W(xué)生有了問題,才會思考和探索,有探索才會有發(fā)展。所以我整堂課的設(shè)計都是用一個一個的問題串起來的,特別是導(dǎo)課的時候用一次一次的質(zhì)疑,將學(xué)生的積極性都調(diào)動起來了,營造出一種學(xué)生想要迫切探究圓柱體積計算方法的氛圍。這些都是我這節(jié)課的一些比較成功的地方。當(dāng)然這節(jié)課也留下了很多的遺憾:首先就是以往上課語言表達(dá)的問題再次被點了出來,這次雖然較以往說話語速過慢變成了較快了,可是還是沒有什么高低起落調(diào),所以讓聽課的學(xué)生和老師都感覺缺少激情,這個問題應(yīng)該盡快解決。再就是,課堂上,對學(xué)生的放手不夠,學(xué)生的自主權(quán)還是欠缺的,新的理念告訴我們,學(xué)生已不是課堂教學(xué)中的聽眾、觀眾、知識的接受者,而需要成為課堂教學(xué)的主動參與者、問題者、自主者、合作者,所以在今后的教學(xué)中要著重增加學(xué)生的自主權(quán),讓學(xué)生自己提問題,自己解決問題,遇到困難先求助同學(xué)。老師一引導(dǎo)為主,在教學(xué)設(shè)計的時候,要敢于給學(xué)生廣闊的空間,本節(jié)課,在引導(dǎo)學(xué)生猜想解決圓柱體積問題的時候,我先給學(xué)生復(fù)習(xí)了圓轉(zhuǎn)化為長方形的過程,從一定程度上,限制了學(xué)生的思維。如果能把這個環(huán)節(jié)改為溫馨提示性質(zhì)的小提醒,效果就會截然不同了。
作為一名青年教師,要抓住每一次這樣的機(jī)會,去積極認(rèn)真的準(zhǔn)備課,全身投入的上課,還要深刻,認(rèn)真的反思,在不反思中提高、在反思中對癥下藥。
《圓柱的體積》教學(xué)設(shè)計14
教學(xué)目標(biāo)
1.使學(xué)生初步理解和掌握圓柱的體積計算公式。會用公式計算圓柱的體積,并能應(yīng)用分式解答一些實際問題。
2.在充分展示體積公式推導(dǎo)過程的基礎(chǔ)上,培養(yǎng)學(xué)生推理歸納能力和自學(xué)能力。
教學(xué)重點: 圓柱體積公式推導(dǎo)過程;正確理解圓柱體積公式推導(dǎo)過程。
教學(xué)難點:圓柱體積公式推導(dǎo)過程;正確理解圓柱體積公式推導(dǎo)過程。
教 法:啟發(fā)點撥,歸納總結(jié),直觀演示
學(xué) 法:自學(xué)歸納法,小組交流法
課前準(zhǔn)備:課件
教學(xué)過程:
一、定向?qū)W(xué)(5分)
(一)導(dǎo)學(xué)
1.什么叫體積?(指名回答)
生:物體所占空間的大小叫做體積。
師:你學(xué)過哪些體積的計算公式?(指名回答)
根據(jù)學(xué)生的回答,板書:
長方體體積=底面積×高
2.圓面積公式是怎樣推導(dǎo)出來的?
生:把一個圓,平均分成數(shù)個扇形,拼成一個近似長方形,長方形的長相當(dāng)于圓周長的一半,寬相當(dāng)于圓的半徑,(根據(jù)學(xué)生的敘述,邊用幻燈片演示。)得到圓面積公式s=2πr。
3.動腦筋想一想,圓柱的體積,能不能轉(zhuǎn)化成你學(xué)過的形體,推導(dǎo)出計算圓柱體積的公式?
4、導(dǎo)入
我們已經(jīng)認(rèn)識了圓柱體,學(xué)會了圓柱體側(cè)面積和表面積的計算,今天研究圓柱的體積。(板書:圓柱的體積)
(二)定向
出示學(xué)習(xí)目標(biāo):
1、理解和掌握圓柱的體積計算公式。
2、會用公式計算圓柱的.體積,并能運(yùn)用公式解答一些實際問題。
二、合作交流(15分)
1.閱讀書25頁。
2、看書回答:
(1)圓柱體是怎樣變成近似長方體的?
(2)切拼成的長方體的體積、底面積和高分別與圓柱體的體積、底面積、高有什么關(guān)系?
(3)怎樣計算切拼成的長方體體積?為什么 ?用字母怎樣表示?
3、小組展評交流結(jié)果。
(1)展評題(1)。圓柱體是怎樣變成長方體的?把圓柱體底面分成許多相等的扇形(例如分成16份),然后把圓柱切開,拼成一個近似長方體。(教師加以說明,底面扇形平均分的份數(shù)越多,拼成的立體圖形越接近長方體。)
(2)展評題2。
切拼成的長方體的體積相當(dāng)于圓柱的體積,長方體的底面積相當(dāng)于圓柱體的底面積,長方體的高相當(dāng)于圓柱體的高。
。3)展評題3
圓柱體積=底面積×高
v=sh
4、公式檢測
學(xué)生獨立完成書上做一做1、2題。
三、自主學(xué)習(xí)(5)
1、出示例6
下面這個杯子能不能裝下這袋奶
直徑8厘米 高10厘米 這袋奶498毫升
2、嘗試列式計算.
3、學(xué)生展示自學(xué)結(jié)果。
4、小結(jié)
小結(jié):要求圓柱體積,必須知道圓柱的底面積(如果給半徑、直徑、底面周長,先求出底面積)和高。注意統(tǒng)一單位名稱。
四、質(zhì)疑探究(2)
已知圓柱的底面周長和高又怎樣求圓柱的體積?
五、
小結(jié)檢測
。
13
分)
。ㄒ唬┬〗Y(jié)
讓學(xué)生說出圓柱體積的推導(dǎo)過程,體積公式。
。ǘz測
1、把圓柱切開,可拼成一個( ),圓柱的體積等于近似長方體的( ),圓柱的底面積等于( ),圓柱的高等于( ),所以圓柱的體積=( )。
2.圓柱體的底面積3.14平方分米,高40厘米。它的體積是多少?
3.一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?
4 判斷正誤,對的畫“√”,錯誤的畫“×”。
。1)圓柱體的底面積越大,它的體積越大。( )
(2)圓柱體的高越長,它的體積越大。( )
。3)圓柱體的體積與長方體的體積相等。( )
。4)圓柱體的底面直徑和高可以相等。( )
5、 一張長方形的紙長6.28分米,寬4分米。用它分別圍成兩個圓柱體,它們的體積大小一樣嗎?請你計算一下。
板書設(shè)計:
圓柱的體積
圓柱體積=底面積×高
v=sh
75× 90=6750(立方厘米) 杯子的底面積:3.14×(8/2) ×(8/2) ×10=502.4(ml)
答:它的體積是6750立方米。答:這個杯子能裝下這袋奶。
《圓柱的體積》教學(xué)設(shè)計15
評價樣題:
學(xué)習(xí)流程:
一、創(chuàng)設(shè)現(xiàn)實情境,增強(qiáng)探究欲望。
1、出示橡皮泥做的圓柱體:怎樣求出這個圓柱體橡皮泥的體積?你能想出幾種辦法?
如果要求(出示百家姓廣場上的圓柱形大鼎底座圖片)圓柱形大鼎底座的體積,還能用剛才那樣的方法嗎?那怎么辦?(學(xué)生試說出自己的辦法。)
看起來前面這些方法雖然可行,但有一定的局限性,我們必須找到一個解決任意圓柱體積的方法才行,對嗎?今天,就讓我們來共同研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)
二、親歷建構(gòu)過程,提高探索能力。
1、提出問題,大膽猜想
你能猜一猜圓柱的體積怎樣計算嗎?你覺得圓柱體積的大小和什么有關(guān)?
。ü膭顚W(xué)生大膽猜測,說出自己的想法)
2、回顧舊知,幫助遷移
同學(xué)們都很會大膽猜想,但還要小心地論證猜想的科學(xué)性。你還記得圓面積轉(zhuǎn)化什么圖形的面積來求它的公式的嗎?
。ㄑ菔菊n件:圓轉(zhuǎn)化成長方形)
3、引發(fā)思考:我們能否把圓柱體也轉(zhuǎn)化成學(xué)過的立體圖形來計算它的體積呢?如果能,猜一猜能轉(zhuǎn)化成哪種立體圖形?
4、小組合作,驗證猜想
下面請大家四人一組,借助手中的學(xué)具或用蘿卜和土豆做成的圓柱分組進(jìn)行探討。
。ǔ鍪竞献魈峋V)小組長做好分工,并完成記錄表。
活動記錄表
思考:
1、圓柱體可以轉(zhuǎn)化成哪種立體圖形?
2、兩種立體圖形之間有怎樣的聯(lián)系?你們發(fā)現(xiàn)了什么?得出了什么結(jié)論?
3、怎樣用簡捷的形式表示你推導(dǎo)出來的公式呢?
活動過程:
1、我們用方法,把圓柱體轉(zhuǎn)化成了體。
2、在這個轉(zhuǎn)化的.過程中,變了,沒有變。
3、通過觀察比較,我們發(fā)現(xiàn):把一個圓柱體的底面分成許多相等的扇形,然后切、拼,就能得到一個近似的長方體。這個長方體的底面積等于圓柱體的(),高就是圓柱體的()。因為,長方體體積=(),所以,圓柱體的體積計算公式是v=()。
5、全班交流,展示評價。
評價交流中,借助評價樣題。同時課件演示切拼的過程,同時演示將圓柱底面等分成32份、64份……,讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。 6、根據(jù)學(xué)生的發(fā)現(xiàn)引導(dǎo)學(xué)生推導(dǎo)出:
圓柱的體積=底面積×高,
用字母表示v = sh。
7、反饋練習(xí)。
(1)要求圓柱體積,必須知道哪些條件?
。2)出示例5,學(xué)生借助圓柱體積公式自主完成,并及時訂正反饋。
圓柱的體積教學(xué)設(shè)計 相關(guān)內(nèi)容:用轉(zhuǎn)化的策略解決分?jǐn)?shù)問題“長方體和正方體的表面積”的教學(xué)實錄小學(xué)數(shù)學(xué)《倒數(shù)的認(rèn)識》教案北師大版6年級數(shù)學(xué)第11冊第1單元《圓的認(rèn)識》教案1、分?jǐn)?shù)四則混合運(yùn)算《按比例分配》課后反思百分?jǐn)?shù)的意義和讀寫法反思百分?jǐn)?shù)(三)用百分?jǐn)?shù)解決問題查看更多>>小學(xué)六年級數(shù)學(xué)教案
【《圓柱的體積》教學(xué)設(shè)計】相關(guān)文章:
《圓柱的體積》教學(xué)設(shè)計(15篇)06-10
《圓柱的體積》教學(xué)設(shè)計(精選10篇)06-28
《圓柱的體積》的教學(xué)設(shè)計(通用11篇)06-23
《圓柱的體積》數(shù)學(xué)教學(xué)設(shè)計(精選13篇)10-29
《用圓柱的體積解決問題》教學(xué)設(shè)計范文06-24
六年級數(shù)學(xué)《圓柱的體積》教學(xué)設(shè)計02-07
圓錐的體積教學(xué)設(shè)計03-02