初中數(shù)學教學設計 15篇
作為一名無私奉獻的老師,編寫教學設計是必不可少的,編寫教學設計有利于我們科學、合理地支配課堂時間。優(yōu)秀的教學設計都具備一些什么特點呢?以下是小編幫大家整理的初中數(shù)學教學設計 ,歡迎大家分享。
初中數(shù)學教學設計 1
教材分析:
一元二次方程根與系數(shù)的關系的知識內(nèi)容主要是以前一單元中的求根公式為基礎的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根與系數(shù)的關系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后通過4個例題介紹了利用根與系數(shù)的關系簡化一些計算的知識。
學情分析:
1.學生已學習用求根公式法解一元二次方程。
2.本課的教學對象是九年級學生,學生對事物的認
識多是直觀、形象的,他們所注意的多是事物外部的、直接的、具體形象的特征。
3.在教學初始,出示一些學生所熟悉和感興趣的東西,結合一元二次方程求根公式使他們在現(xiàn)代化的教學模式和傳統(tǒng)的教學模式相結合的基礎上掌握一元二次方程根與系數(shù)的關系。
教學目標:
1、知識目標:要求學生在理解的基礎上掌握一元二次方程根與系數(shù)的關系式,能運用根與系數(shù)的關系由已知一元二次方程的一個根求出另一個根與未知數(shù),會求一元二次方程兩個根的倒數(shù)和與平方數(shù),兩根之差。
2、能力目標:通過韋達定理的教學過程,使學生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學活動過程,發(fā)展推理能力,能有條理地、清晰地闡述自己的觀點,進一步培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新精神。
3、情感目標:通過情境教學過程,激發(fā)學生的求知欲望,培養(yǎng)學生積極學習數(shù)學的態(tài)度。體驗數(shù)學活動中充滿著探索與創(chuàng)造,體驗數(shù)學活動中的成功感,建立自信心。
教學重難點:
1、重點:一元二次方程根與系數(shù)的關系。
2、難點:讓學生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關系,比較抽象,學生真正掌握有一定的難度,是教學的難點。
教學過程:
板書設計:
一元二次方程根與系數(shù)的關系如果ax+bx+c=0(a≠0)的.兩根是x1,x2,那么x1+x2= ,x1x2= 。
問題6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用嗎? ①二次項系數(shù)a是否為零,決定著方程是否為二次方程; ②當a≠0時,b=0,a、c異號,方程兩根互為相反數(shù); ③當a≠0時,△=b-4ac可判定根的情況; ④當a≠0,b-4ac≥0時,x1+x2=,x1x2=。⑤當a≠0,c=0時,方程必有一根為0。
學生學習活動評價設計:
本節(jié)課充分讓學生分析、觀察、提高了學生的歸納能力及推理論證的能力。
教學反思:
1.一元二次方程根與系數(shù)的關系的推導是在求根公式的基礎上進行。它深化了兩根的和與積同系數(shù)之間的關系,是我們今后繼續(xù)研究一元二次方程根的情況的主要工具,必須熟記,為進一步使用打下基礎。
2.以一元二次方程根與系數(shù)的關系的探索與推導,向學生展示認識事物的一般規(guī)律,提倡積極思維,勇于探索的精神,借此鍛煉學生分析、觀察、歸納的能力及推理論證的能力
3.一元二次方程的根與系數(shù)的關系,在中考中多以填空,選擇,解答題的形式出現(xiàn),考查的頻率較高,也常與幾何、二次函數(shù)等問題結合考查,是考試的熱點,它是方程理論的重要組成部分。
4.使學生體會解題方法的多樣性,開闊解題思路,優(yōu)化解題方法,增強擇優(yōu)能力。力求讓學生在自主探索和合作交流的過程中進行學習,獲得數(shù)學活動經(jīng)驗,教師應注意引導。
初中數(shù)學教學設計 2
一、背景
新課標要求,應讓學生在實際背景中理解基本的數(shù)量關系和變化規(guī)律,注重使學生經(jīng)歷從實際問題中建立數(shù)學模型、估計、求解、驗證解的正確性與合理性的過程。在實際工作中讓學生學會從具體問題情景中抽象出數(shù)學問題,使用各種數(shù)學語言表達問題、建立數(shù)學關系式、獲得合理的解答、理解并掌握相應的數(shù)學知識與技能,這些多數(shù)教師都注意到了,但要做好,還有一定難度。
二、教學片段
在剛過去的這個學期,我上了一節(jié)“一元一次不等式組的應用”。
出示例題:小寶和爸爸、媽媽三人在操場上玩蹺蹺板,爸爸體重為72千克,坐在蹺蹺板的一端,體重只有媽媽一半的小寶和媽媽一同坐在另一端。這時,爸爸的一端仍然著地,后來小寶借來一副質(zhì)量為6千克的'啞鈴,加在他和媽媽坐的一端,結果,爸爸被高高地蹺起。猜猜看,小寶的體重約多少千克?
我問學生:“你們玩過蹺蹺板嗎?先看看題,一會請同學復述一下!睂W生復述后,基本已經(jīng)熟悉了題目。我接著讓學生思考:他們?nèi)俗藥状诬E蹺板?第一次坐時情況怎樣?第二次呢?學生議論了一會兒,自主發(fā)言,很快發(fā)現(xiàn)本題中存在的兩種文字形式的不等關系:
爸爸體重>小寶體重+媽媽體重
爸爸體重<小寶體重+媽媽體重+一副啞鈴重量
我引導:你還能怎么判斷小寶體重?學生安靜了幾分鐘后,開始議論。一學生舉手了:“可以列不等式組!蔽医o出提示:“小寶的體重應該同時滿足上述的兩個條件。怎么把這個意思表達成數(shù)學式子呢?”這時學生們七嘴八舌地討論起來,都搶著回答,
我注意到一位平時不愛說話的學生緊鎖眉頭,便讓他發(fā)言:“可以設小寶的體重為x千克,能列出兩個不等式。可是接下來我就不知道了!蔽衣犃诵闹幸粍,意識到這應是思想滲透的好機會,便解釋說:“我們在初中會遇到許多問題都可以用類似的方法來研究解決,比方說前面列方程組”不等我說完,學生都齊聲答:“列不等式組。”全班12小組積極投入到解題活動中了。5分鐘后,我請學生板演,自己下去巡查、指導,發(fā)現(xiàn)學生的解題思路都很清楚,只是部分學生對答案的表達不夠準確。于是提議學生說說列不等式組解應用題分幾步,應注意什么。此時學生也基本上形成了對不等式方法的完整認識。我便出示拓展應用課件:
一次考試共25道選擇題,做對一道得4分,做錯一道減2分,不做得0分。若小明想確保考試成績在60分以上,那么他至少要做對多少題?
設置這道題,既有調(diào)查本節(jié)課效果的意圖,也想鞏固拓展一下學生的思維。沒料到相當多學生對“至少”一詞理解不準確,導致失誤。這正好讓我們的“本課小結”填補了一個空白——弄清題目中描述數(shù)量關系的關鍵詞才是解題的關鍵。
三、反思
本節(jié)課講完后,我感到一絲欣慰,看到孩子們躍躍欲試的學習勁頭,突然領悟到:教師的教學行為至關重要,成功的教學,能開啟學生心靈的窗戶,能幫學生樹立學習的自信心。
本節(jié)課我有幾個深刻的感受:
1、在課前準備的時候,我就覺得不等式組的應用是個難點。所以在課堂教學中設置了幾個臺階,這也正好符合了循序漸進的教學原則。
2、例題貼近學生實際,我在教學中有采用了更親近的教學語言,有利于激發(fā)學生的探究欲望。
3、關注學生的學習狀態(tài),隨時采取靈活適宜的教學方法,師生互動,生生互動,課堂教學才更加有效。
4、學生在學習后,確實感受到“不等式的方法”就像方程的方法一樣是從字母表示數(shù)開始研究解決的。這種方法可以幫助我們用數(shù)學的方式解決實際問題。
初中數(shù)學教學設計 3
一、教學目標:
1.理解二元一次方程及二元一次方程的解的概念;
2.學會求出某二元一次方程的幾個解和檢驗某對數(shù)值是否為二元一次方程的解;
3.學會把二元一次方程中的一個未知數(shù)用另一個未知數(shù)的一次式來表示;
4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育.
二、教學重點、難點:
重點:二元一次方程的意義及二元一次方程的解的概念.
難點:把一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程.
三、教學方法與教學手段:
通過與一元一次方程的比較,加強學生的類比的思想方法; 通過“合作學習”,使學生認識數(shù)學是根據(jù)實際的需要而產(chǎn)生發(fā)展的觀點.
四、教學過程:
1.情景導入:
新聞鏈接:桐鄉(xiāng)70歲以上老人可領取生活補助,
得到方程:80a+150b=902 880.
2.新課教學:
引導學生觀察方程80a+150b=902 880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1次的方程叫做二元一次方程.
做一做:
(1)根據(jù)題意列出方程:
、傩∶魅タ赐棠,買了5 kg蘋果和3 kg梨共花去23元,分別求蘋果和梨的單價.設蘋果的單價x元/kg , 梨的單價y元/kg ;
、谠诟咚俟飞,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米,如果設轎車的速度是a千米/小時,卡車的速度是b千米/小時,可得方程: .
。2)課本P80練習2. 判定哪些式子是二元一次方程方程.
合作學習:
活動背景愛心滿人間——記求是中學“學雷鋒、關愛老人”志愿者活動.
問題:參加活動的36名志愿者,分為勞動組和文藝組,其中勞動組每組3人,文藝組每組6人.
團支書擬安排8個勞動組,2個文藝組,單從人數(shù)上考慮,此方案是否可行? 為什么? 把x=8,y=2代入二元一次方程3x+6y=36,看看左右兩邊有沒有相等? 由學生檢驗得出代入方程后,能使方程兩邊相等. 得出二元一次方程的解的概念:使二元一次方程兩邊的值相等的一對未知數(shù)的值叫做二元一次方程的一個解.
并提出注意二元一次方程解的書寫方法.
3.合作學習:
給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數(shù))的值,女同學馬上給出對應的x的值; 接下來男女同學互換.(比一比哪位同學反應快)請算的最快最準確的同學講他的.計算方法.提問:給出x的值,計算y的值時,y的系數(shù)為多少時,計算y最為簡便?
出示例題:已知二元一次方程 x+2y=8.
(1)用關于y的代數(shù)式表示x;
。2)用關于x的代數(shù)式表示y;
(3)求當x= 2,0,-3時,對應的y的值,并寫出方程x+2y=8的三個解.
(當用含x的一次式來表示y后,再請同學做游戲,讓同學體會一下計算的速度是否要快)
4.課堂練習:
(1)已知:5xm-2yn=4是二元一次方程,則m+n=;
(2)二元一次方程2x-y=3中,方程可變形為y= 當x=2時,y= ;
5.你能解決嗎?
小紅到郵局給遠在農(nóng)村的爺爺寄掛號信,需要郵資3元8角.小紅有票額為6角和8角的郵票若干張,問各需要多少張這兩種面額的郵票?說說你的方案.
6.課堂小結:
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
(2)二元一次方程解的不定性和相關性;
(3)會把二元一次方程化為用一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式.
7.布置作業(yè):(1)教材P82; (2)作業(yè)本.
教學設計意圖:
依照課程標準,通過分析教材中教學情境設計和例習題安排的意圖,在此基礎上依據(jù)學生實際,制訂了本堂課的教學目標,教學重點和難點,課堂教學的設計始終圍繞這教學重點和難點展開.
在充分理解教材編寫意圖、教學要求和教學理念的基礎上,根據(jù)學生實際,從學生的已有經(jīng)驗出發(fā),創(chuàng)設了教學情境:關心老人,突出情感主線,并貫穿整個教學. 并對教學
內(nèi)容進行適當?shù)闹亟M、補充和加工等,創(chuàng)造性地使用了教材. 所選擇的例習題都體現(xiàn)實際問題數(shù)學化的思想,讓學生感受到數(shù)學的魅力. 這兩個方面的設計貫穿整堂課,把知識內(nèi)容和情感體驗自然連貫起來.
其次,在教學過程設計中,體現(xiàn)了讓學生展示解決問題的思維過程,通過幾個合作學習,激發(fā)學生主動去接觸問題,從而達到解決問題的目的. 重視學生學習過程中的自我評價和生生間的相互評價,關注學生對解題思路回顧能力的培養(yǎng).
二元一次方程概念的教學中,通過與一元一次方程的類比的方法,使得學生加深印象. 在突破難點的設計上,通過游戲的形式激發(fā)學生的學習興趣,并在選題時,通過降低例題的難度,使學生迅速掌握用關于一個未知數(shù)的代數(shù)式表示另一個字母的方法,體會運用這種方法的可使求二元一次方程求解更簡便.
初中數(shù)學教學設計 4
課型:新授課
學習目標:
1.能根據(jù)具體問題中的數(shù)量關系列出一元二次方程并利用它解決具體問題.
2.學會運用數(shù)學知識分析解決實際問題,體會數(shù)學的價值。
重點:列一元二次方程解應用題
難點:學會分析問題中的等量關系
一、知識回顧
列方程解應用題的一般步驟是①②③④⑤⑥
二、自學教材、合作探究
1、自學教材45頁,學習分析“探究一”中的數(shù)量關系
設每輪傳染中平均一個人傳染了x個人。開始有一人患了流感,第一輪的傳染源就是這個人,他傳染了x個人,那么,用代數(shù)式表示,第一輪后共有( )人患了流感;第二輪傳染中,這些人中的每個人又傳染了x個人,用代數(shù)式表示,第二輪后共有( )人患了流感。則可列方程為:
2、解這個方程,得
3、想一想:三輪傳染后有多少人患流感?四輪呢?
三、檢查自學效果
1.(xxxx年畢節(jié)地區(qū))有一人患了流感,經(jīng)過兩輪傳染后共有100人患了流感,那么每輪傳染中,平均一個人傳染的人數(shù)為( )
A.8人B.9人C.10人D.11人
2.生物興趣小組的學生,將自己收集的標本向本組其他成員各贈送一件;全組共互贈了182件.如果全組有x名學生,則根據(jù)題意列出的方程是( )
A. B. C. D.
四、指導學生應用
某種電腦病毒傳播非?,如果一臺電腦被感染,經(jīng)過兩輪感染后就會有81臺電腦被感染.請你用學過的知識分析,每輪感染中平均一臺電腦會感染幾臺電腦?若病毒得不到有效控制,3輪感染后,被感染的電腦會不會超過700臺?(xxxx廣東中考9分)
解:設每輪感染中平均每一臺電腦會感染臺電腦,1分
4分
解之得6分
8分
答:每輪平均每一臺電腦會感染臺電腦,3輪感染后,被感染的電腦超過700臺。
五、鞏固訓練:
1.一個多邊形的對角線有9條,則這個多邊形的邊數(shù)是( ).
A.6 B.7 C.8 D.9
2.元旦期間,一個小組有若干人,新年互送賀卡一張,已知全組共送賀卡132張,則這個小組共有( )人
A.11 B.12 C.13 D.14
3.九年級(3)班文學小組在舉行的圖書共享儀式上互贈圖書,每個同學都把自己的圖書向本組其他成員贈送一本,全組共互贈了240本圖書,如果設全組共有x名同學,依題意,可列出的方程是( )
A.x(x+1)=240 B.x(x-1)=240
C.2x(x+1)=240 D.x(x+1)=240
4.參加中秋晚會的每兩個人都握了一次手,所有人共握手10次,則有( )人參加聚會。
5.學校組織了一次籃球單循環(huán)比賽,共進行了15場比賽,那么有個球隊參加了這次比賽。
6.甲型H1N1流感病毒的傳染性極強,某地因1人患了甲型H1N1流感沒有及時隔離治療,經(jīng)過兩天傳染后共有9人患了甲型H1N1流感,每天傳染中平均一個人傳染了幾個人?如果按照這個傳染速度,再經(jīng)過5天的.傳染后,這個地區(qū)一共將會有多少人患甲型H1N1流感?
反思:2題和4題列方程時為何不一樣呢?
六、歸納小結:
1.本節(jié)課我們學習了列一元一次方程解應用題,要注意解題步驟,特別地,要檢驗解的結果是否正確與符合題意,并注意題型的積累。
2.(方法歸納)解應用題地步驟是:審、設、列、解、檢、答,關鍵是尋找等量關系,可以采用列式法,線段圖示法,列表法等來幫助尋找,并注重檢驗。
七、效果測評:
1.解下列方程。(1)+10x+21=0(2)-x=1
2.兩個相鄰的偶數(shù)的積是240,求這兩個偶數(shù)。
3.參加一次足球聯(lián)賽的每兩個隊之間都進行兩場比賽,共要比賽90場,共有多少個隊參加比賽?
初中數(shù)學教學設計 5
課題
正比例函數(shù)
一 教學目標
1.通過案例理解正比例函數(shù),能列出正比例函數(shù)關系式 2.教會學生應用正比例函數(shù)解決生活實際問題的能力
二 教學重點
理解正比例函數(shù)的概念
三 教學難點
利用正比例函數(shù)解決生活實際問題
四 教學過程
【提出問題】
《阿甘正傳》是一部勵志影片。片中阿甘曾跑步繞美國數(shù)圈,假設他從德州到加州行進了21000千米,耗費了他150天時間。
。1) 阿甘大約平均每天跑步多少千米?
。2) 阿甘的行程y(km)與時間x(天)之間有什么關系?
。3) 阿甘一個月(30天)的行程是多少千米?
【生】 列算式回答 【師】 點評總結
2.寫出下列變量間的函數(shù)表達式
。1) 正方形的周長l和半徑r之間的關系
【進一步抽象問題讓學生思考】
(2) 大米每千克四元,則售價y元與數(shù)量x(kg)的函數(shù)關系式是什么?
。3) 下列函數(shù)關系式有什么共同點?(小組合作)
【分析共同點和不同點,找出規(guī)律】 (1) y=200x
(2) l=2∏r (3) m=7.8V 【生回答,師點評】 【引入新課】
1.正比例函數(shù)的概念:
一般地,形如y=kx (k≠0)的`函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù).【板書概念,引導學生分析正比例函數(shù)的定義】
2 【例題講解】
例1 在同一坐標系里,畫出下列函數(shù)的圖像: y=0.5x y=x y=3x 解: 【略】
【掌握函數(shù)圖像的畫法:列表,描點,連線】 3.練習
。1)已知正比例函數(shù)y=kx.當 x=3 時 y=6 。求 k的值
(2) 一種筆記本每本的單價為3元。則銷售金額y元與銷售量x之間的關系式是怎樣的? 當銷售金額為360元時,則售出了多少本這種筆記本?
四 小結
五 課外作業(yè)
【反思】
由于函數(shù)的概念比較抽象,學生不容易理解。而理解函數(shù)的概念是教學的重點。這節(jié)課首先通過實例,回顧函數(shù)的概念,其次抽象提出正比例函數(shù)關系式,由學生觀察得到特點,然后引出正比例函數(shù)的概念和特點,再通過練習加以鞏固,最后通過小組討論利用正比例函數(shù)解決生活中的問題。
初中數(shù)學教學設計 6
一、教學設計:
1、學習方式:
對于全等三角形的研究,實際是平面幾何中對封閉的兩個圖形關系研究的第一步。的關系。它不僅是學習后面知識的基礎,并且是證明線段相等、角相等以及兩線互相垂練地掌握全等三角形的判定方法,并且靈活的應用。為了使學生更好地掌握這一部分內(nèi)形式創(chuàng)設問題情景,設計一系列實踐活動,引導學生操作、觀察、探索、交流、發(fā)現(xiàn)、出幾何模型和運用所學內(nèi)容,解決實際問題的過程,真正把學生放到主體位置。
2、學習任務分析:
充分利用教科書提供的素材和活動,鼓勵學生經(jīng)歷觀察、操作、推理、想象等活動問題、解決問題的方法,積累數(shù)學活動經(jīng)驗。培養(yǎng)學生有條理的思考,表達和交流的能將直觀與簡單推理相結合,注意學生推理意識的建立和對推理過程的理解,能運用自己以后的證明打下基礎。
3、學生的認知起點分析:
學生通過前面的學習已了解了圖形的全等的概念及特征,掌握了全等圖形的對應邊全等的條件做好了知識上的準備。另外,學生也具備了利用已知條件作三角形的基本作課的操作、探究成為可能。
4、教學目標:
。1)學生在教師引導下,積極主動地經(jīng)歷探索三角形全等的條件的過程,體會利用
(2)掌握三角形全等的“邊邊邊”、“邊角邊”、“角邊角”、“角角邊”的判定三角形的全等解決一些實際問題。
(3)培養(yǎng)學生的空間觀念,推理能力,發(fā)展有條理地表達能力,積累數(shù)學活動經(jīng)驗
5、教學的重點與難點:
重點:三角形全等條件的探索過程是本節(jié)課的重點。
從設置情景提出問題,到動手操作,交流,直至歸納得出結論,整個過程學生不僅得到得是經(jīng)歷了知識的形成過程,體會了一種分析問題的方法,積累了數(shù)學活動經(jīng)驗,這將數(shù)學。
難點:三角形全等條件的探索過程,特別是創(chuàng)設出問題后,學生面對開放性問題,要情況進行討論,對初一學生有一定的難度。
根據(jù)初一學生年齡、生理及心理特征,還不具備獨立系統(tǒng)地推理論證幾何問題的能力,夠全面,因此要充分發(fā)揮教師的主導作用,適時點撥、引導,盡可能調(diào)動所有學討中來,使學生在與他人的合作交流中獲取新知,并使個性思維得以發(fā)展。
6、教學過程(略)
教學步驟教師活動學生活動教學媒體(資源)和教學方式
7、反思小結
提煉規(guī)律
電腦顯示,帶領學生復習全等三角定義及其性質(zhì)。
電腦顯示,小明畫了一個三角形,怎樣才能畫一個三角形與他的三角形全等?我們知道三個角分別對應相等,那麼,反之這六個元素分別對應,這樣的兩個三角形一定全等.但是能否盡可能少嗎?對學生分類中出現(xiàn)的問題,予以糾正,對學生提出的解決問題的`不同策略,要給予肯定和展學生個性思維。
按照三角形“邊、角”元素進行分類,師生共同歸納得出:
1、一個條件:一角,一邊
2、兩個條件:兩角;兩邊;一角一邊
3、三個條件:三角;三邊;兩角一邊;兩邊一角
按以上分類順序動腦、動手操作,驗證。教師收集學生的作品,加以比較,得出結論:只給出一個或兩個條件時,都不能保證所畫出的三角形一定全等。
下面將研究三個條件下三角形全等的判定。
(1)已知三角形的三個角分別為40°、60°、80°,畫出這個三角形,并與同伴比學生得出結論后,再舉例體會一下。舉例說明:
如老師上課用的三角尺與同學用的三角板三個角分別對應相等,但一個大一個小,很再如同是:等邊三角形,邊長不等,兩個三角形也不全等。等等。
。2)已知三角形三條邊分別是4cm,5cm,7cm,畫出這個三角形,并與同伴比較是否板演:三邊對應相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”。
由上面的結論可知:只要三角形三邊的長度確定了,這個三角形的形狀和大小就確實物演示:
由三根木條釘成的一個三角形框架,它的大小和形狀是固定不變的,三角形的這個性質(zhì)舉例說明該性質(zhì)在生活中的應用
類比著三角形,讓學生動手操作,研究四邊形、五邊性有無穩(wěn)定性
圖形的穩(wěn)定性與不穩(wěn)定性在生活中都有其作用,讓學生舉例說明。
題組練習(略)
4、(對有能力的學生要求把實際問題抽象成數(shù)學問題,根據(jù)自己的理解寫出推理由,并能說明每一步的根據(jù)。)教師帶領,回顧反思本節(jié)課對知識的研究探索過程,小結方法及結論,提煉數(shù)學思想在教師引導下回憶前面知識,為探究新知識作好準備。
議一議:
學生分小組進行討論交流。受教師啟發(fā),從最少條件開始考慮,一個條件;兩個條件;三個況漸漸明朗,進行交流予以匯總,歸納。
想一想:
對只給一個條件畫三角形,畫出的三角形一定全等嗎?畫一畫:
按照下面給出的兩個條件做出三角形:(1)三角形的兩個角分別是:30°,50°(2)三角形的兩條邊分別是:4cm,6cm(3)三角形的一個角為30,一條邊為3cm
剪一剪:
把所畫的三角形分別剪下來。
比一比:
同一條件下作出的三角形與其他同學作的比一比,是否全等。學生重復上面的操作過程,畫一畫,剪一剪,比一比。學生總結出:三個內(nèi)角對應相等的兩個三角形不一定全等
學生舉例說明
學生模仿上面的研究方法,獨立完成操作過程,通過交流,歸納得出結論。
鼓勵學生自己舉出實例,體驗數(shù)學在生活中的應用.學生那出準備好的硬紙條,進行實驗,得出結論:四邊形、五邊形不具穩(wěn)定性。
學生練習
學生在教師引導下回顧反思,歸納整理。
z+z平臺演示
z+z平臺演示,教師加以分析。學生分組討論,師生互動合作。
經(jīng)過對各種情況得分析,歸納,總結,對學生滲透分類討論的數(shù)學思想。結論很顯然只需學生想像即可,z+z平臺輔助直觀演示。學生動手操作,通過實踐、自主探索、交流,獲得新知。
初中數(shù)學教學設計 7
在教學過程中,很多教師總認為自己在上課中講得井井有條,知識條理十分透徹,演算透徹清晰,但結果是有大多數(shù)學生不能舉一反三,數(shù)學學習困難重重。產(chǎn)生這種現(xiàn)象的原因,多數(shù)教師都歸因于學生素質(zhì)差、家庭教育環(huán)境不良等教師以外的因素,很少發(fā)現(xiàn)是自己教學能力和素養(yǎng)導致而成。
課堂教學是師生的雙邊活動。課堂教學的實質(zhì)是師生雙方的信息交流,共同學校的過程。教師得知學生在數(shù)學學習很困難時,是否想到了可能教師自己對教材理解不夠,沒有準確地把握教材的重點、難點,對教材內(nèi)容層次沒有理清和教學方法不適呢?《數(shù)學課程標準》指導下,我們的數(shù)學教學目的是要學生在數(shù)學學習中,由“聽”到“懂”,再到“會”,最后到“通”。為此,教師必須深刻反思自己的教育教學行為,批判性地考察自我主體行為表現(xiàn)及其行為依據(jù)。通過觀察、回顧、診斷、自我監(jiān)控等方式,或給予肯定、支持與強化,或給予否定、思索與修正,將“學會教學”與“學會學習”結合起來,從而努力提升教學實踐的合理性,提高課堂教學效能,到達提高教學質(zhì)量的目的,F(xiàn)就以下幾方面談談自己的看法。
一、教師要反思教育觀念
新課標下要求教師要改變學科的教育觀,始終體現(xiàn)“學生是教學活動的主體”科學理念,著眼于學生的終身發(fā)展,注重培養(yǎng)學生濃厚的學習興趣和正確的學習習慣。數(shù)學非常重視教學內(nèi)容與實際生活的緊密聯(lián)系。但是在教學活動中還是有不少教師習慣于傳統(tǒng)的教學模式,偏重于知識的傳授,強調(diào)接受式學習,這樣使很多學生在學習數(shù)學上失去了興趣。教學中教師要抓住時機,不斷地引導學生在設疑、質(zhì)疑、解疑的過程中,創(chuàng)設認知“沖突”,激發(fā)學生持續(xù)的學習興趣和求知欲望,順利地建立數(shù)學概念,把握數(shù)學定義、定理和規(guī)律。
教師在探究教學中要立足與培養(yǎng)學生的獨立性和自主性,引導他們質(zhì)疑、調(diào)查和探究,學會在實踐中學,在合作中學,逐步形成適合于自己的學習策略。例如,在學習等腰三角形三線合一的性質(zhì)時可以讓三個同學合作分別去畫出頂角平分線、底邊上的高、底邊上的中線,這是學生會發(fā)現(xiàn)三條線為什么會是一條線?證明三角形全等的方法有多種,為什么 “角邊邊”不能判定兩三角形全等?在學習鑲嵌時,可以提這樣的問題,為什么正三角形、正方形、長方形正六邊形可以,而正五邊形不可以?等等。
這樣教師不斷地設問,不斷地質(zhì)疑,就能引導學生進行積極思考,激發(fā)起學生濃厚的學習興趣和求知欲望,促使學生在生活中發(fā)現(xiàn)和歸納各種各樣的數(shù)學規(guī)律,為下一步學習數(shù)學知識打下堅實的基礎。所以我們的教師必須反思自己的教育觀念,緊緊抓住主導和主體的關系,解決好學生學習積極性的問題。
二、教師要反思教學設計
教學設計是課堂教學的藍本,是對課堂教學的整體規(guī)劃和預設,勾勒出了課堂教學活動的'效益取向。設計教學方案時,教師對當前的教學內(nèi)容及其地位(概念的“解構”、思想方法的“析出”、相關知識的聯(lián)系方式等),學生已有知識經(jīng)驗,教學目的,重點與難點,如何依據(jù)學生已有認知水平和知識的邏輯過程設計教學過程,如何突出重點和突破難點,學生在理解概念和思想方法時可能會出現(xiàn)哪些情況以及如何處理這些情況,設計哪些練習以鞏固新知識,如何評價學生的學習效果等,都應該有一定的思考和預設。教學設計的反思就是對這些思考和預設是否考慮到
了。教學后,要對實際進程和學生的接受程度進行比較和反思,找出成功和不足之處及其原因,從而有效地改進教學。
三、教師要反思教學方法
教師教得好,本質(zhì)上講是學生學得好。在實際教學過程中我們的教學方法是否合乎學生實際呢?上課、評卷、答疑解難時,有的教師自以為講清楚明白了,學生受到了一定的啟發(fā),但反思后發(fā)現(xiàn),教師的講解并沒有很好地從學生原有的知識基礎出發(fā),從根本上解決學生認識上鴻溝問題。有的教師只是一味的設想按照自己某個固定的程序去解決某一類問題,也許學生當時聽明白了,但往往是是而非,并沒有真正理解問題的本質(zhì)。
初中數(shù)學教學中,例習題教學是數(shù)學教學中重要的組成部分,是概念類教學的延伸和發(fā)展。教材中的例習題都是編者精心編制的,具有典型性和啟發(fā)性,它們不僅是對基礎知識的鞏固,同時對培養(yǎng)學生智力、掌握數(shù)學思想和方法,及培養(yǎng)學生應用數(shù)學意識和能力,提高學生的數(shù)學素養(yǎng)等都有重要意義。
四、教師要反思學生學習方法
《數(shù)學課程標準》指出,有效的數(shù)學學習活動不能單純依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式,因此,轉變數(shù)學學習方式,倡導有意義的學習方式是課程改革的核心任務。初中學生年齡一般在十二至十六歲之間,正處生長發(fā)育期,思想不成熟,行為不穩(wěn)定,辦事情緒化,喜表露,易沖動, 既有面見師長的羞澀, 有初生牛犢不怕虎的習性。在數(shù)學學習上憑興趣,看心情,個性反映較為突出,有不少學生學習方法也存在一定的問題。同時他們往往又很難發(fā)現(xiàn)自己的學習方法不妥。所以,教師就應該反思學生的學習方法,找一找哪些問題,并幫助他們努力改變不恰當?shù)姆椒,使學生達到《新課標》的要求。
總之,為學之道,必本與思,思則得之,不思則不得。教學也是這個規(guī)律,只教不思就會成為教死書的教書匠,學生也得不到很好的受益。要想成為優(yōu)秀的教師,只有一邊教書一邊總結,一邊教書一邊反思,才能實現(xiàn)自己的目的。
初中數(shù)學教學設計 8
摘 要:本著對課堂練習分層教學設計的要求與目的,本節(jié)課設計了三個層次。針對學困生的特殊情況,課堂練習通過誦讀定理和抄寫例題來使其加深印象;在鞏固練習中中等生要求書面寫出步驟并進行展示;對于優(yōu)等生在快結束本節(jié)課時拋出變式讓他們進行思考,并交流思路。這三個層次都貫穿于整個課堂教學,使每位學生上課都有事可做,根據(jù)自己的能力來解決能力范圍內(nèi)的問題。
關鍵詞:相切;環(huán)節(jié)說明;分層體現(xiàn);
一、案例背景介紹
。ㄒ唬┙虒W環(huán)境
在我們著手進行課題《初中數(shù)學分層教學方式與策略研究》的研究開始后,大家齊心協(xié)力探索、研究方法,組內(nèi)各種分層招數(shù)可謂是百花齊放,為此我代表課題組上了一節(jié)分層教學的展示課,以供同仁觀摩點評,為促進數(shù)學教學的分層設計向更好的方向前行作貢獻。
(二)學生情況
我校學生大部分來自韓莊鎮(zhèn)不同的自然村,由于小學地域的不同,所以學生的基礎各不相同,很多學生的基礎還相當薄弱。因此這種情況特別適合分層教學。
(三)教材情況
本課是人教版初三數(shù)學上冊第24章圓第2節(jié)點和圓、直線和圓的位置關系中的一個課時:直線和圓相切的情況。學生已經(jīng)有了點和圓的位置關系的基礎以及直線和圓的位置關系的數(shù)量的認識,本節(jié)課研究直線與圓的特殊位置關系相切,將相切從位置到數(shù)量的邏輯自然過渡,進而引出圓的切線的判定和性質(zhì)。重點是圓的切線的判定定理和性質(zhì)定理。難點是判定定理的理解和性質(zhì)定理證明中反證法的理解。
二、案例內(nèi)容設計及說明
環(huán)節(jié)一:復習引入
通過回顧舊知再次加深圓與直線的位置關系,在全班集體朗讀中體會d與r的關系,并順勢將位置關系量化這一問題顯化,同時自然引出特殊情況――相切
環(huán)節(jié)說明:俗話說書讀百遍,其意自現(xiàn)。數(shù)學概念在朗讀中更能逐漸理解其本質(zhì),因此不光語文需要朗讀,數(shù)學也要朗讀。而且針對我班學困生上課聽不懂,不會做的現(xiàn)象,這樣來設計復習方式更能調(diào)動我班學生學習的動力,讓每位學生都參與到課堂教學中來。這也是這個環(huán)節(jié)分層的體現(xiàn)。
環(huán)節(jié)二:新知探究
活動
1、引導學生從直線與圓相切的位置及數(shù)量關系上來深入探究,通過動態(tài)演示來理解一條直線何時變成圓的切線。
環(huán)節(jié)說明:上節(jié)課得到的圓與直線相切是數(shù)量上的關系,通過動態(tài)的演示讓學生明確位置的變化,從而總結出切線的判定。但是引導很重要,從兩個方面去觀察:直線經(jīng)過哪里?與圓的半徑有什么位置關系?需要老師點撥。并要等待學生來總結,不能操之過急。分層體現(xiàn)1對觀察的結果分別讓兩位程度較差的學生回答,再讓中等程度的學生來總結;體現(xiàn)2對定理的數(shù)學表達讓全體學生寫在練習本上,老師選擇展示,并修改;體現(xiàn)3對總結出的判定進行朗讀。
活動
2、將判定的題設和結論互換后的探究。
環(huán)節(jié)說明:反證法在過三點做圓時已有所涉及,所以在這里用反證法證明切線的性質(zhì)時讓學生互相交流討論然后進行匯報就行,不要進行過多的引申,否則淡化了主題。分層體現(xiàn)1討論交流時采取師傅和徒弟在同一組,師傅負責解釋證明的方法;體現(xiàn)2數(shù)學語言的書寫讓學生自己寫并派代表寫在黑板上。
環(huán)節(jié)三:鞏固和應用
通過判斷題加深對切線的判定和性質(zhì)的理解。通過師生共同分析解決幾何解答證明題,并由學生書寫證明步驟。
環(huán)節(jié)說明:判斷題中設置了3道小題,并給出了反例,能使學生更加明確定理的意義。這里教學的分層體現(xiàn)在針對反例來問學困生為什么不對,讓學生說出違背了所需條件的哪一條,強化切線判定條件在這部分學生頭腦中的印象。例題的分析采取了小組討論交流的方法,與環(huán)節(jié)二中的分組一樣,分層體現(xiàn)在“師帶徒”弄清解題思路,師傅增強了解題的邏輯性,更嚴密,徒弟學會了解題的分析,拓寬了視野,打開了思路。在有思路的前提下,全班安靜書寫步驟。還可以展示在投影下,由學生來評判書寫的是否清楚。
環(huán)節(jié)四:課堂小結
在小結中,除了總結出本節(jié)課所學的判定和性質(zhì)外,將相關的判定和性質(zhì)做一歸納很有必要,“在不斷的總結中收獲、進步”不是嗎?同時提出下節(jié)課要學習的相關性質(zhì)更能激起學生學習的.積極性。
環(huán)節(jié)說明:在小結的分層中判定由程度稍差點的學生總結,哪怕照著書上找都行,并進行誦讀,使其再次熟知所學知識。在性質(zhì)的總結中,老師拋出兩條本節(jié)未涉及的性質(zhì)給學生,讓學生課后思考證明,在下節(jié)課時可由學生簡要發(fā)表見解并證明。
環(huán)節(jié)五:拓展練習
通過引導學生添加輔助線,點撥學生圓中常用輔助線的做法,分情況添加恰當?shù)妮o助線。這兩個練習旨在拓展尖子生的思維。
環(huán)節(jié)六:作業(yè)布置
通過分層布置,使每位學生都能在自己能力范圍內(nèi)進行鞏固練習。
環(huán)節(jié)說明:作業(yè)
1、重點面向學困生考察其掌握基礎的程度。作業(yè)
2、針對待優(yōu)生夯實基礎的基礎上,提高其運用能力。作業(yè)
3、是設計的培優(yōu)計劃,對學有余力的學生來說是個很好的鍛煉機會。
三、案例分析與反思
實際上本節(jié)課中圓的切線的判定定理是為了便于應用而對直線和圓相切的定義改寫得到的一種形式,而圓的切線的性質(zhì)定理的證明僅僅要求學生再次感受反證法,并不要求會應用,所以本節(jié)的設計在分層中很注重理解和感知,通過互幫互助和朗讀感知達到難點的突破,另外圓是學生學習的第一個曲線形,由直線形到曲線形,在知識上是一個飛躍,本節(jié)利用圖形運動變化過程發(fā)現(xiàn)其中圖形的性質(zhì),做好了知識前后的銜接,同時加強了新舊知識的聯(lián)系,發(fā)揮出了知識的遷移作用。類比也是本節(jié)課所用到的一個重要的學習方法,而且在教授過程中難度的控制非常適當,分層的影子處處可見?v觀整節(jié)課的分層之處進入都很自然,也落到了實處,但分層效果的檢測沒有體現(xiàn)出來,這也是遺憾之處。
初中數(shù)學教學設計 9
為了提高學生的學習興趣,增大學生的學習參與面,減小差距。努力作好教學工作,在這一學期中,下文將準備了初中二年級下冊數(shù)學教學設計如下:
一、教學目標:
通過本期的學習,要使學生在情感與態(tài)度上,認識到數(shù)學來源于實踐,又反作用于實踐,認識現(xiàn)實生活中圖形間的數(shù)量關系,能夠設計精美的圖案,提高學生的審美情趣,培養(yǎng)學生實事求是、嚴肅認真的學習態(tài)度,激發(fā)學生的學習興趣,培養(yǎng)學生對數(shù)學的熱愛,對生活的熱愛,在民主、和諧、合作、探究、有序、分享發(fā)現(xiàn)快樂,感受學習的快樂。對于過程與方法,通過學生積極參與對知識的探究,經(jīng)歷發(fā)現(xiàn)知識,發(fā)現(xiàn)知識間的內(nèi)在聯(lián)系,讓學生經(jīng)歷發(fā)現(xiàn)知識道路上坎坎坷坷,達到深刻理解掌握知識的目的,達到漫江碧透,魚翔淺底的境界,在經(jīng)歷這些活動中,提高學生的動手實踐能力,提高學生的邏輯推理能力與邏輯思維能力,自主探究,解決問題的能力,提高運算能力,使所有學生在數(shù)學上都有不同的發(fā)展,盡可能接近其發(fā)展的最大值,培養(yǎng)學生良好的學習習慣,發(fā)展學生的非智力因素,使學生潛移默化的接受辯證唯物主義的熏陶,提高學生素質(zhì)。
二、教材分析
本學期教學內(nèi)容共計五章,知識的前后聯(lián)系,教材的教學目標,重、難點分析如下:
第十六章 分式 本章的主要內(nèi)容包括:分式的概念,分式的基本性質(zhì),分式的約分與通分,分式的加、減、乘、除運算,整數(shù)指數(shù)冪的'概念及運算性質(zhì),分式方程的概念及可化為一元一次方程的分式方程的解法。
第十七章 反比例函數(shù) 函數(shù)是研究現(xiàn)實世界變化規(guī)律的一個重要模型,本單元學生在學習了一次函數(shù)后,進一步研究反比例函數(shù)。學生在本章中經(jīng)歷:反比例函數(shù)概念的抽象概括過程,體會建立數(shù)學模型的思想,進一步發(fā)展學生的抽象思維能力;經(jīng)歷反比例函數(shù)的圖象及其性質(zhì)的探索過程,在交流中發(fā)展能力這是本章的重點之一;經(jīng)歷本章的重點之二:利用反比例函數(shù)及圖象解決實際問題的過程,發(fā)展學生的數(shù)學應用能力;經(jīng)歷函數(shù)圖象信息的識別應用過程,發(fā)展學生形象思維;能根據(jù)所給信息確定反比例函數(shù)表達式,會作反比例函數(shù)圖象,并利用它們解決簡單的實際問題。本章的難點在于對學生抽象思維的培養(yǎng),以及提高數(shù)形結合的意識和能力。
第十八章 勾股定理 直角三角形是一種特殊的三角形,它有許多重要的性質(zhì),如兩個銳角互余,30度角所對的直角邊等于斜邊的一半,本章所研究的勾股定理,也是直角三角形的性質(zhì),而且是一條非常重要的性質(zhì),本章分為兩節(jié),第一節(jié)介紹勾股定理及其應用,第二節(jié)介紹勾股定理的逆定理。
第十九章 四邊形 四邊形是人們?nèi)粘I钪袘幂^廣泛的一種圖形,尤其是平行四邊形、矩形、菱形、正方形、梯形等特殊四邊形的用處更多。因此,四邊形既是幾何中的基本圖形,也是空間與圖形領域研究的主要對象之一。本章是在學生前面學段已經(jīng)學過的四邊形知識、本學段學過的多邊形、平行線、三角形的有關知識的基礎上來學習的,也可以說是在已有知識的基礎上做進一步系統(tǒng)的整理和研究,本章內(nèi)容的學習也反復運用了平行線和三角形的知識。從這個角度來看,本章的內(nèi)容也是前面平行線和三角形等內(nèi)容的應用和深化。
第二十章 數(shù)據(jù)的分析 本章主要研究平均數(shù)、中位數(shù)、眾數(shù)以及極差、方差等統(tǒng)計量的統(tǒng)計意義,學習如何利用這些統(tǒng)計量分析數(shù)據(jù)的集中趨勢和離散情況,并通過研究如何用樣本的平均數(shù)和方差估計總體的平均數(shù)和方差,進一步體會用樣本估計總體的思想。
三、提高學科教育質(zhì)量的主要措施:
1、認真做好教學七認真工作。把教學七認真作為提高成績的主要方法,認真研讀新課程標準,鉆研新教材,根據(jù)新課程標準,擴充教材內(nèi)容,認真上課,批改作業(yè),認真輔導,認真制作測試試卷,也讓學生學會認真學習。
2、興趣是最好的老師,愛因斯坦如是說。激發(fā)學生的興趣,給學生介紹數(shù)學家,數(shù)學史,介紹相應的數(shù)學趣題,給出數(shù)學課外思考題,激發(fā)學生的興趣。
3、引導學生積極參與知識的構建,營造民主、和諧、平等、自主、探究、合作、交流、分享發(fā)現(xiàn)快樂的高效的學習課堂,讓學生體會學習的快樂,享受學習。引導學生寫復習提綱,使知識來源于學生的構造。
4、引導學生積極歸納解題規(guī)律,引導學生一題多解,多解歸一,培養(yǎng)學生透過現(xiàn)象看本質(zhì),提高學生舉一反三的能力,這是提高學生素質(zhì)的根本途徑之一,培養(yǎng)學生的發(fā)散思維,讓學生處于一種思如泉涌的狀態(tài)。
5、運用新課程標準的理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。
6、培養(yǎng)學生良好的學習習慣,陶行知說:教育就是培養(yǎng)習慣,有助于學生穩(wěn)步提高學習成績,發(fā)展學生的非智力因素,彌補智力上的不足。
7、指導成立課外興趣小組的民間組織,開展豐富多彩的課外活動,開展對奧數(shù)題的研究,課外調(diào)查,操作實踐,帶動班級學生學習數(shù)學,同時發(fā)展這一部分學生的特長。
8、開展分層教學,布置作業(yè)設置A、B、C三類分層布置分別適合于差、中、好三類學生,課堂上的提問要照顧好、中、差三類學生,使他們都等到發(fā)展。
9、進行個別輔導,優(yōu)生提升能力,扎實打牢基礎知識,對差生,一些關鍵知識,輔導差生過關,為差生以后的發(fā)展鋪平道路。
10、站在系統(tǒng)的高度,使知識構筑在一個系統(tǒng),上升到哲學的高度,八方聯(lián)系,渾然一體,使學生學得輕松,記得牢固。
初中數(shù)學教學設計 10
教學目標
1.知道什么是全等形、全等三角形及全等三角形的對應元素;
2.知道全等三角形的性質(zhì),能用符號正確地表示兩個三角形全等;
3.能熟練找出兩個全等三角形的對應角、對應邊.
教學重點
全等三角形的性質(zhì).
教學難點
找全等三角形的對應邊、對應角.
教學過程
一.提出問題,創(chuàng)設情境
1、問題:你能發(fā)現(xiàn)這兩個三角形有什么美妙的關系嗎?
這兩個三角形是完全重合的
2.學生自己動手(同桌兩名同學配合)
取一張紙,將自己事先準備好的三角板按在紙上,畫下圖形,照圖形裁下來,紙樣與三角板形狀、大小完全一樣.
3.獲取概念
讓學生用自己的語言敘述:全等形、全等三角形、對應頂點、對應角、對應邊,以及有關的數(shù)學符號.
形狀與大小都完全相同的兩個圖形就是全等形.
要是把兩個圖形放在一起,能夠完全重合,就可以說明這兩個圖形的形狀、大小相同.
概括全等形的準確定義:能夠完全重合的兩個圖形叫做全等形.請同學們類推得出全等三角形的概念,并理解對應頂點、對應角、對應邊的含義.仔細閱讀課本中"全等"符號表示的.要求.
二.導入新課
將△ABC沿直線BC平移得△DEF;將△ABC沿BC翻折180°得到△DBC;將△ABC旋轉180°得△AED.
議一議:各圖中的兩個三角形全等嗎?
不難得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED.
(注意強調(diào)書寫時對應頂點字母寫在對應的位置上)
啟示:一個圖形經(jīng)過平移、翻折、旋轉后,位置變化了,但形狀、大小都沒有改變,所以平移、翻折、旋轉前后的圖形全等,這也是我們通過運動的方法尋求全等的一種策略.
觀察與思考:
尋找甲圖中兩三角形的對應元素,它們的對應邊有什么關系?對應角呢?
(引導學生從全等三角形可以完全重合出發(fā)找等量關系)
得到全等三角形的性質(zhì):全等三角形的對應邊相等.全等三角形的對應角相等.
[例1]如圖,△OCA≌△OBD,C和B,A和D是對應頂點,說出這兩個三角形中相等的邊和角.
問題:△OCA≌△OBD,說明這兩個三角形可以重合,思考通過怎樣變換可以使兩三角形重合?
將△OCA翻折可以使△OCA與△OBD重合.因為C和B、A和D是對應頂點,所以C和B重合,A和D重合.
∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.
總結:兩個全等的三角形經(jīng)過一定的轉換可以重合.一般是平移、翻轉、旋轉的方法.
[例2]如圖,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的對應邊和對應角.
分析:對應邊和對應角只能從兩個三角形中找,所以需將△ABE和△ACD從復雜的圖形中分離出來.
根據(jù)位置元素來找:有相等元素,它們就是對應元素,然后再依據(jù)已知的對應元素找出其余的對應元素.常用方法有:
(1)全等三角形對應角所對的邊是對應邊;兩個對應角所夾的邊也是對應邊.
(2)全等三角形對應邊所對的角是對應角;兩條對應邊所夾的角是對應角.
解:對應角為∠BAE和∠CAD.
對應邊為AB與AC、AE與AD、BE與CD.
[例3]已知如圖△ABC≌△ADE,試找出對應邊、對應角.(由學生討論完成)
借鑒例2的方法,可以發(fā)現(xiàn)∠A=∠A,在兩個三角形中∠A的對邊分別是BC和DE,所以BC和DE是一組對應邊.而AB與AE顯然不重合,所以AB與AD是一組對應邊,剩下的AC與AE自然是一組對應邊了.再根據(jù)對應邊所對的角是對應角可得∠B與∠D是對應角,∠ACB與∠AED是對應角.所以說對應邊為AB與AD、AC與AE、BC與DE.對應角為∠A與∠A、∠B與∠D、∠ACB與∠AED.
做法二:沿A與BC、DE交點O的連線將△ABC翻折180°后,它正好和△ADE重合.這時就可找到對應邊為:AB與AD、AC與AE、BC與DE.對應角為∠A與∠A、∠B與∠D、∠ACB與∠AED.
三.課堂練習
課本練習1.
四.課時小結
通過本節(jié)課學習,我們了解了全等的概念,發(fā)現(xiàn)了全等三角形的性質(zhì),并且利用性質(zhì)可以找到兩個全等三角形的對應元素.這也是這節(jié)課大家要重點掌握的
找對應元素的常用方法有兩種:
(一)從運動角度看
1.翻轉法:找到中心線,沿中心線翻折后能相互重合,從而發(fā)現(xiàn)對應元素.
2.旋轉法:三角形繞某一點旋轉一定角度能與另一三角形重合,從而發(fā)現(xiàn)對應元素.
3.平移法:沿某一方向推移使兩三角形重合來找對應元素.
(二)根據(jù)位置元素來推理
1.全等三角形對應角所對的邊是對應邊;兩個對應角所夾的邊是對應邊.
2.全等三角形對應邊所對的角是對應角;兩條對應邊所夾的角是對應角.
五.作業(yè)
課本習題1
課后作業(yè):《新課堂》
初中數(shù)學教學設計 11
一、內(nèi)容和內(nèi)容解析
。ㄒ唬﹥(nèi)容
概念:不等式、不等式的解、不等式的解集、解不等式以及能在數(shù)軸上表示簡單不等式的解集.
。ǘ﹥(nèi)容解析
現(xiàn)實生活中存在大量的相等關系,也存在大量的不等關系.本節(jié)課從生活實際出發(fā)導入常見行程問題的不等關系,使學生充分認識到學習不等式的重要性和必然性,激發(fā)他們的求知欲望.再通過對實例的進一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個概念.前面學過方程、方程的解、解方程的概念.通過類比教學、不等式、不等式的解、解不等式幾個概念不難理解.但是對于初學者而言,不等式的解集的理解就有一定的難度.因此教材又進行數(shù)形結合,用數(shù)軸來表示不等式的解集,這樣直觀形象的表示不等式的解集,對理解不等式的解集有很大的幫助.基于以上分析,可以確定本節(jié)課的教學重點是:正確理解不等式、不等式的解與解集的`意義,把不等式的解集正確地表示在數(shù)軸上.
二、目標和目標解析
。ㄒ唬┙虒W目標
1.理解不等式的概念
2.理解不等式的解與解集的意義,理解它們的區(qū)別與聯(lián)系3.了解解不等式的概念
4.用數(shù)軸來表示簡單不等式的解集
。ǘ┠繕私馕
1.達成目標1的標志是:能正確區(qū)別不等式、等式以及代數(shù)式.
2.達成目標2的標志是:能理解不等式的解是解集中的某一個元素,而解集是所有解組成的一個集合.
3.達成目標3的標志是:理解解不等式是求不等式解集的一個過程.
4、達成目標4的標志是:用數(shù)軸表示不等式的解集是數(shù)形結合的又一個重要體現(xiàn),也是學習不等式的一種重要工具.操作時,要掌握好“兩定”:一是定界點,一般在數(shù)軸上只標出原點和界點即可,邊界點含于解集中用實心圓點,或者用空心圓點;二是定方向,小于向左,大于向右.
三、教學問題診斷分析
本節(jié)課實質(zhì)是一節(jié)概念課,對于不等式、不等式的解以及解不等式可通過類比方程、方程的解、解方程類比教學,學生不難理解,但是對不等式的解集的理解就有一定的難度.
因此,本節(jié)課的教學難點是:理解不等式解集的意義以及在數(shù)軸上正確表示不等式的解集.
四、教學支持條件分析
利用多媒體直觀演示課前引入問題,激發(fā)學生的學習興趣.
五、教學過程設計
。ㄒ唬﹦赢嬔菔厩榫凹とざ嗝襟w演示:兩個體重相同的孩子正在蹺蹺板上做游戲,現(xiàn)在換了一個大人上去,蹺蹺板發(fā)生了傾斜,游戲無法繼續(xù)進行下去了,這是什么原因呢?設計意圖:通過實例創(chuàng)設情境,從“等”過渡到“不等”,培養(yǎng)學生的觀察能力,分析能力,激發(fā)他們的學習興趣.
。ǘ┝⒆銓嶋H引出新知
問題一輛勻速行駛的汽車在11︰20距離a地50km,要在12︰00之前駛過a地,車速應滿足什么條件?
小組討論,合作交流,然后小組反饋交流結果.最后,老師將小組反饋意見進行整理(學生沒有討論出來的思路老師進行補充)
1.從時間方面慮:2.從行程方面:<>50 3.從速度方面考慮:x>50÷
設計意圖:培養(yǎng)學生合作、交流的意識習慣,使他們積極參與問題的討論,并敢于發(fā)表自己的見解.老師對問題解決方法的梳理與補充,發(fā)散學生思維,培養(yǎng)學生分析問題、解決問題的能力.
。ㄈ┚o扣問題概念辨析
1.不等式
設問1:什么是不等式?
設問2:能否舉例說明?由學生自學,老師可作適當補充.比如:是不等式.
2.不等式的解
設問1:什么是不等式的解?設問2:不等式的解是唯一的嗎?由學生自學再討論.
老師點撥:由x>50÷得x>75說明x任意取一個大于75的數(shù)都是不等式
3.不等式的解集
設問1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都設問2:不等式的解集與不等式的解有什么區(qū)別與聯(lián)系?由學生自學后再小組合作交流.
老師點撥:不等式的解是不等式解集中的一個元素,而不等式的解集是不等式所有解組成的一個集合.
4.解不等式
設問1:什么是解不等式?由學生回答.
老師強調(diào):解不等式是一個過程.
設計意圖:培養(yǎng)學生的自學能力,進一步培養(yǎng)學生合作交流的意識.遵循學生的認知規(guī)律,有意識、有計劃、有條理地設計一些問題,可以讓學生始終處于積極的思維狀態(tài),不知不覺中接受了新知識.老師再適當點撥,加深理解.
。ㄋ模⿺(shù)形結合,深化認識
問題1:由上可知,x>75既是不等式的解集.那么在數(shù)軸上如何表示x>75呢?問題2:如果在數(shù)軸上表示x≤ 75,又如何表示呢?由老師講解,注意規(guī)范性,準確性.老師適當補充:“≥”與“≤”的意義,并強調(diào)用“≥”或“≤”連接的式子也是不等式.比如x≤ 75就是不等式.
設計意圖:通過數(shù)軸的直觀讓學生對不等式的解集進一步加深理解,滲透數(shù)形結合思想.
(五)歸納小結,反思提高教師與學生一起回顧本節(jié)課所學主要內(nèi)容,并請學生回答如下問題
1、什么是不等式?<的解集,也是不等式>50
2、什么是不等式的解?
3、什么是不等式的解集,它與不等式的解有什么區(qū)別與聯(lián)系?
4、用數(shù)軸表示不等式的解集要注意哪些方面?
設計意圖:歸納本節(jié)課的主要內(nèi)容,交流心得,不斷積累學習經(jīng)驗.
。┎贾米鳂I(yè),課外反饋
教科書第119頁第1題,第120頁第2,3題.
設計意圖:通過課后作業(yè),教師及時了解學生對本節(jié)課知識的掌握情況,以便對教學進度和方法進行適當?shù)恼{(diào)整.
六、目標檢測設計
1.填空
下列式子中屬于不等式的有___________________________
①x +7>
、趚≥ y + 2 = 0
③ 5x + 7
設計意圖:讓學生正確區(qū)分不等式、等式與代數(shù)式,進一步鞏固不等式的概念.
2.用不等式表示
① a與5的和小于7
、 a的與b的3倍的和是非負數(shù)
、壅叫蔚倪呴L為xcm,它的周長不超過160cm,求x滿足的條件設計意圖:培養(yǎng)學生審題能力,既要正確抓住題目中的關鍵詞,如“大于(小于)、非負數(shù)(正數(shù)或負數(shù))、不超過(不低于)”等等,正確選擇不等號,又要注意實際問題中的數(shù)量的實際意義.
初中數(shù)學教學設計 12
一、學情分析
學生通過上節(jié)課的學習,已經(jīng)掌握了如何用沒有刻度的直尺和圓規(guī)作一條線段等于已知線段。同時在學習中學生已經(jīng)初步理解了作圖的步驟,具備了基本的作圖能力,并能簡單的表達作圖過程,為本節(jié)課的學習奠定了良好的知識基礎。同時在以前的`數(shù)學學習中學生已經(jīng)經(jīng)歷了很多合作學習的過程,具有了一定的合作學習的經(jīng)驗,具備了一定的合作與交流的能力。
二、教學目標分析
教科書基于學生在上節(jié)課學習了如何作一條線段等于已知線段,并積累了一定的活動經(jīng)驗,提出本節(jié)課的主要教學任務是:會用尺規(guī)作一個角等于已知角,并了解它在尺規(guī)作圖中的簡單應用。為此,本節(jié)課的教學目標是:
1、能按照作圖語言來完成作圖動作,能用尺規(guī)作一個角等于已知角,并了解它在尺規(guī)作圖中的簡單應用。
2、能利用尺規(guī)作角的和、差、倍。
3、能夠通過尺規(guī)設計并繪制簡單的圖案。
4、在尺規(guī)作圖過程當中,積累數(shù)學活動經(jīng)驗,培養(yǎng)動手能力和邏輯分析能力。
三、教學設計分析
1、回顧與思考
活動內(nèi)容:
。1)怎樣利用沒有刻度的直尺和圓規(guī)作一條線段等于已知線段?
。2)練習:已知線段a,b,c,作一條線段m,使得m=a+b—c
活動目的:
通過回顧上節(jié)課學習的用尺規(guī)作線段,既達到了復習鞏固,反饋落實的目的,同時熟練尺規(guī)的使用,積累活動經(jīng)驗,也為后面學習用尺規(guī)作角起到了鋪墊的作用。
2、情境引入,探索發(fā)現(xiàn)
活動內(nèi)容:如圖2
初中數(shù)學教學設計 13
[教學目標]
1.會說出怎樣的兩個圖形是全等形,并會用符號語言表示兩個三角形全等。
2.知道全等三角形的有關概念,會在全等三角形中正確地找出對應頂點、對應邊、對應角。
3.會說出全等三角形的對應邊、對應角相等的性質(zhì)。
此外,通過把兩個重合的三角形變換其中一個的位置,使它們呈現(xiàn)各種不同位置的活動,讓學生從中了解并體會圖形變換的思想,逐步培養(yǎng)學生
動態(tài)的研究幾何圖形的意思。
[引導性材料]
我們身邊經(jīng)?吹"一模一樣"的圖形,比如同一版面的記念郵票,同一版面的人民幣、用兩張紙疊在一起剪出的兩張窗花等,請大家舉出這類圖形的例子。
說明:讓學生在舉出實際例子以及對所舉例子的辨析中獲得對全等圖形盡可能多的精確的感知。
[教學設計]
問題1:幾何中,我們把上述所例舉的"一模一樣"的圖形叫做"全等形",以下是描述全等形的三種不同的說法,你認為哪種說法是恰當?shù)?(l)形狀相同的兩個圖形叫全等形。
(2)大小相等的兩個圖形叫全等形。
(3)能夠完全重合的兩個圖形叫全等形。
(學生閱讀課本第21頁,全等三角形的有關概念、全等三解形的表示方法。)操作和觀察(學生用兩塊透明塑料片疊合在一起,任意剪兩個全等的三角形,教師制作兩個全等三角形的復合投影片演示。)(1)將重合的兩塊全等三角形塑料片中的一個沿著一邊所在的直線移動,觀察移動過程中這兩個三角形有哪幾種不同位置?畫出這兩個全等三角形不同位置的組合圖形。
(2)圖是上述移動過程中的兩個全等三角形組合的圖形,說出它們的對應頂點、對應邊、對應角。
(3)將重合的兩塊三角形塑料片,以一邊所在的直線為軸,把其中一個三角形翻折180,請你畫出翻折后的兩個全等三角形組合的圖形。
(4)將兩塊全等的三角形塑料片拼合成如圖中的圖形,并指出它們的對應頂點、對應邊、對應角。
[小結]
1.識別全等三角形的對應邊、對應角的關鍵是正確識別它們的對應頂點。
2.用全等三變換的方法觀察圖形,有助于正確、迅速的從復雜圖形中識別出全等三角形。
[作業(yè)]課本組第2、3、4題。
初中數(shù)學實踐課教案設計三一、教材分析本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(六三學制)七年級下冊第七章第三節(jié)多邊形內(nèi)角和。
二、教學目標1、知識目標:了解多邊形內(nèi)角和公式。
2、數(shù)學思考:通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
4、情感態(tài)度目標:通過猜想、推理活動感受數(shù)學活動充滿著探索以及
數(shù)學結論的確定性,提高學生學習熱情。
三、教學重、難點重點:探索多邊形內(nèi)角和。
難點:探索多邊形內(nèi)角和時,如何把多邊形轉化成三角形。
四、教學方法:引導發(fā)現(xiàn)法、討論法五、教具、學具教具:多媒體課件學具:三角板、量角器六、教學媒體:大屏幕、實物投影七、教學過程:
(一)創(chuàng)設情境,設疑激思師:大家都知道三角形的內(nèi)角和是180o,那么四邊形的內(nèi)角和,你知道嗎?活動一:探究四邊形內(nèi)角和。
在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。
方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360o。
方法二:把兩個三角形紙板拼在一起構成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360o。
接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉化成兩個三角形。
師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
活動二:探究五邊形、六邊形、十邊形的內(nèi)角和。
學生先獨立思考每個問題再分組討論。
關注:(1)學生能否類比四邊形的方式解決問題得出正確的結論。
(2)學生能否采用不同的方法。
學生分組討論后進行交流(五邊形的內(nèi)角和)方法1:把五邊形分成三個三角形,3個180o的和是540o。
方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180o的和減去一個周角360o。結果得540o。
方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180o的和減去一個平角180o,結果得540o。
方法4:把五邊形分成一個三角形和一個四邊形,然后用180o加上360o,結果得540o。
師:你真聰明!做到了學以致用。
交流后,學生運用幾何畫板演示并驗證得到的.方法。
得到五邊形的內(nèi)角和之后,同學們又認真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720o,十邊形內(nèi)角和是1440o。
(二)引申思考,培養(yǎng)創(chuàng)新師:通過前面的討論,你能知道多邊形內(nèi)角和嗎?活動三:探究任意多邊形的內(nèi)角和公式。
思考:(1)多邊形內(nèi)角和與三角形內(nèi)角和的關系?(2)多邊形的邊數(shù)與內(nèi)角和的關系?
(3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關系?學生結合思考題進行討論,并把討論后的結果進行交流。
發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180o的和,五邊形內(nèi)角和是3個180o的和,六邊形內(nèi)角和是4個180o的和,十邊形內(nèi)角和是8個180o的和。
發(fā)現(xiàn)2:多邊形的邊數(shù)增加1,內(nèi)角和增加180o。
發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關系。
得出結論:多邊形內(nèi)角和公式:(n-2)180。
(三)實際應用,優(yōu)勢互補
1、口答:
(1)七邊形內(nèi)角和xx
(2)九邊形內(nèi)角和xx
(3)十邊形內(nèi)角和xx
2、搶答:
(1)一個多邊形的內(nèi)角和等于1260o,它是幾邊形?
(2)一個多邊形的內(nèi)角和是1440o,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是xx。
3、討論回答:一個多邊形的內(nèi)角和比四邊形的內(nèi)角和多540o,并且這個多邊形的各個內(nèi)角都相等,這個多邊形每個內(nèi)角等于多少度?(四)概括存儲學生自己歸納總結:
1、多邊形內(nèi)角和公式
2、運用轉化思想解決數(shù)學問題
3、用數(shù)形結合的思想解決問題(五)作業(yè):練習冊第93頁1、2、3
八、教學反思:
1、教的轉變本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發(fā)現(xiàn)結論后,利用幾何畫板直觀地展示,激發(fā)學生自覺探究數(shù)學問題,體驗發(fā)現(xiàn)的樂趣。
2、學的轉變學生的角色從學會轉變?yōu)闀䦟W。本節(jié)課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉變整節(jié)課以"流暢、開放、合作、隱導"為基本特征,教師對學生的思維減少干預,教學過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學生與學生,學生與教師之間以"對話"、"討論"為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
初中數(shù)學教學設計 14
(一)提出問題,導入新課
1、解二元一次方程組
問題
1、母親26歲結婚,第二年生個兒子,若干年后母親的年齡是兒子年齡到3倍,此時母親的年齡為幾歲?
解法一:設經(jīng)過x年后,母親的年齡是兒子年齡的3倍。 由題意得
26+x=3x 解法二:設母親的年齡為x歲。 由題意得
x=3(x-26)
(二)精選講例,探求新知
例
2、某班有45位學生,共有班費2400元錢,準備給每位學生訂一份報紙。已知《作文報》的訂費為60元/年,《科學報》的訂費為50元/年,則訂閱兩種報紙各多少人?
鞏固練習 小明和小李兩人進行投籃比賽,規(guī)則:小明投3分球,小李投2分球,兩人共投中20次,經(jīng)計算兩人得分相等,問小李和小明各投中幾個球。
(三)變式訓練,激活學生思維
問題
3、小明和小李兩人進行投籃比賽,小明投3分球,小李投2分球,兩人共投中100次,小明投中率為40%,小明投中率為40%,經(jīng)計算兩人得分相等,問小李和小明各投中幾個球。 問題
4、已知某電腦公司有A型、B型、C型3種型號的'電腦,其價格分別為A型6000元/臺、B型4000元/臺、C型2500元/臺,我校計劃將100500元錢全部用于從該公司購進其中兩種不同型號電腦共36臺,請你設計出幾種不同的購買方案供學校采用。小紅的方案:她認為可以購進A型和B型電腦,請你判斷小紅提出的方案是否合理,并通過計算說明。
(四)課堂練習,鞏固新知
1、A、B兩地相距36千米,甲從A地出發(fā)步行到B地,乙從B地出發(fā)步行到A地,兩人同時出發(fā),4小時候相遇。若6小時后,甲所余路程為乙所余路程的2倍,求甲乙兩人的速度。
2、某班借來一批圖書,分借給同學閱覽,如果每人借6本,那么會有一個同學沒書可借,如果每人借5本,那么還剩5本書沒人借,問該班有多少人,有多少書。
(五)拓展
1、變題訓練問題2中,若學校要購買A、B、C3種型號的電腦,有如何安排?
2、某中學新建一棟4層的教學大樓,每層樓有8間教室,進、出這棟大樓共有4道門,其中兩道正門大小相同,兩道側門大小也相同。安全檢查中,對4道門進行測試,當同時開啟一道正門和兩道側門時,2分鐘內(nèi)可以通過560名學生,當同時開啟一道正門和一道側門時,4分鐘內(nèi)可以通過800名學生。
、艈柶骄糠昼娨坏勒T和一道側門各可以通過多少名學生。
、茩z查中發(fā)現(xiàn),緊急情況時因學生擁擠,出門的效率將降低20%,安全檢查規(guī)定,在緊急情況下全大樓的學生應在5分鐘內(nèi)通過這4道門安全撤離。假設這棟大樓每間教師最多有45名學生,問建造的這4道門是否符合安全規(guī)定。
初中數(shù)學教學設計 15
一、內(nèi)容和內(nèi)容解析
平行四邊形是“空間與圖形”領域中最基本的幾何圖形,它在生活中有著十分廣泛的應用,這不僅表現(xiàn)在日常生活中有許多平行四邊形的圖案,還包含其性質(zhì)在生產(chǎn)、生活各領域的實際應用。
平行四邊形,是建立在前面學習了四邊形的概念和性質(zhì)的基礎之上,將要學習的特殊的四邊形。本節(jié)課是平行四邊形的第一課時,主要研究平行四邊形的概念和邊、角的性質(zhì)。
關于平行四邊形的概念,在小學,學生已經(jīng)學過,并不會感到生疏,但對于這個概念的本質(zhì)屬性,理解的并不是十分深刻,所以,本節(jié)課的學習,并不是簡單的重復。本節(jié)課,平行四邊形的定義采用的.是內(nèi)涵定義法,即“種概念+屬差=被定義的概念”。在平行四邊形的定義中,大前提是“四邊形(種概念)”,條件是“兩組對邊分別平行(屬差)”!皟山M對邊分別平行”是平行四邊形獨有的、用以區(qū)別于一般四邊形的本質(zhì)屬性,這也是平行四邊形概念的核心之所在。平行四邊形的概念,揭示了平行四邊形與四邊形的隸屬關系、區(qū)別與聯(lián)系,反映了平行四邊形的本質(zhì)屬性。同時,它既是平行四邊形的判定,又可以作為平行四邊形的一個性質(zhì)。
關于平行四邊形邊、角的性質(zhì),“平行四邊形的對邊相等”相對于定義中的“兩組對邊分別平行”,是由位置關系向數(shù)量關系的一種延伸;“平行四邊形的對角相等”相對于“兩組對邊分別平行”,是由“相鄰的角互補”產(chǎn)生的思維的一種深化。同時,兩條性質(zhì)的探究,經(jīng)歷的是“感知、猜想、驗證、概括、證明”的認知過程;兩條性質(zhì)的研究,先從邊分析,再從角分析,再到下一節(jié)課的從對角線分析,提供的是研究幾何圖形性質(zhì)的一般思路;兩條性質(zhì)的證明,滲透的是將四邊形問題轉化為三角形問題的一種轉化思想,而添加對角線,介紹的是將四邊形問題轉化為三角形問題的一種常用的轉化手段。
在本章的后續(xù)學習中,對于幾種特殊的四邊形,其定義均采用的是內(nèi)涵定義法,并且矩形和菱形的定義,均以平行四邊形作為種概念,所以平行四邊形的概念作為“核心概念”當之無愧。關于平行四邊形的性質(zhì),也是后續(xù)學習矩形、菱形、正方形等知識的基礎,這些特殊平行四邊形的性質(zhì),都是在平行四邊形性質(zhì)基礎上擴充的,它們的探索方法,也都與平行四邊形性質(zhì)的探索方法一脈相承,因此,平行四邊形的性質(zhì),在后續(xù)的學習中,也是處于核心地位。
教學重點:平行四邊形的概念和性質(zhì)。
二、目標和目標解析
。1)教學目標:
、僬莆掌叫兴倪呅蔚母拍罴靶再|(zhì)。
②學會用分析法、綜合法解決問題。
、垠w會特殊與一般的辯證關系。
、苤鸩金B(yǎng)成良好的個性思維品質(zhì)。
。2)目標解析:
、偈箤W生掌握平行四邊形的概念,掌握平行四邊形的對邊相等,對角相等的性質(zhì),會根據(jù)概念或性質(zhì)進行有關的計算和證明。
、谕ㄟ^有關的證明及應用,教給學生一些基本的數(shù)學思想方法。使學生逐步學會分別從題設或結論出發(fā),尋求論證思路,學會用綜合法證明問題,從而提高學生分析問題解決問題的能力。
、弁ㄟ^四邊形與平行四邊形的概念之間和性質(zhì)之間的聯(lián)系與區(qū)別,使學生認識特殊與一般的辯證關系,個性與共性之間的關系等。使學生體會到事物之間總是互相聯(lián)系又相互區(qū)別的,進一步培養(yǎng)辯證唯物主義觀點。
④通過對平行四邊形性質(zhì)的探究,使學生經(jīng)歷觀察、分析、猜想、驗證、歸納、概括的認知過程,培養(yǎng)學生良好的個性思維品質(zhì)。
【初中數(shù)學教學設計】相關文章:
數(shù)學初中教學設計02-21
初中數(shù)學教學設計05-01
初中數(shù)學教學設計07-28
初中數(shù)學教學設計優(yōu)秀02-17
初中數(shù)學優(yōu)秀教學設計02-14
初中數(shù)學優(yōu)秀教學設計04-21
關于初中數(shù)學教學設計01-09
初中數(shù)學函數(shù)教學設計03-05
初中數(shù)學教學設計指導02-26
初中數(shù)學教學設計研究04-21