成年人在线观看视频免费,国产第2页,人人狠狠综合久久亚洲婷婷,精品伊人久久

我要投稿 投訴建議

《用圓柱的體積解決問題》教學(xué)設(shè)計(jì)

時(shí)間:2023-06-24 14:15:47 教學(xué)設(shè)計(jì) 我要投稿
  • 相關(guān)推薦

《用圓柱的體積解決問題》教學(xué)設(shè)計(jì)范文

  一、教學(xué)目標(biāo)

《用圓柱的體積解決問題》教學(xué)設(shè)計(jì)范文

  (一)知識與技能

  用已學(xué)的圓柱體積知識解決生活中的實(shí)際問題,并滲透轉(zhuǎn)化思想。

  (二)過程與方法

  經(jīng)歷探究不規(guī)則物體體積的轉(zhuǎn)化、測量和計(jì)算過程,讓學(xué)生在動(dòng)手操作中初步建立“轉(zhuǎn)化”的數(shù)學(xué)思想,體驗(yàn)“等積變形”的轉(zhuǎn)化過程。

  (三)情感態(tài)度和價(jià)值觀

  通過實(shí)踐,讓學(xué)生在合作中建立協(xié)作精神,并增強(qiáng)學(xué)生“用數(shù)學(xué)”的意識。

  二、教學(xué)重難點(diǎn)

  教學(xué)重點(diǎn):利用所學(xué)知識合理靈活地分析、解決不規(guī)則物體的體積的計(jì)算方法。

  教學(xué)難點(diǎn):轉(zhuǎn)化前后的溝通。

  三、教學(xué)準(zhǔn)備

  每組一個(gè)礦泉水瓶(課前統(tǒng)一搜集農(nóng)夫山泉礦泉水瓶,裝有適量清水,水高度分別為6、7、8、9厘米),直尺。

  四、教學(xué)過程

  (一)復(fù)習(xí)舊知,做好鋪墊

  1.板書:圓柱的體積。

  問:圓柱的體積怎么計(jì)算?體積和容積有什么區(qū)別?

  2.揭題:這節(jié)課,我們要根據(jù)這些體積和容積的知識來解決生活中的實(shí)際問題。(完整板書:用圓柱的體積解決問題。)

  【設(shè)計(jì)意圖】通過復(fù)習(xí)圓柱的體積計(jì)算方法以及體積和容積之間的聯(lián)系和區(qū)別,為學(xué)習(xí)新知做好知識上的準(zhǔn)備。

  (二)探索實(shí)踐,體驗(yàn)轉(zhuǎn)化過程

  1.創(chuàng)設(shè)情境,提出問題。

  每個(gè)小組桌子上有一個(gè)沒有裝滿水的礦泉水瓶。

  教師:原本這是一瓶裝滿水的礦泉水,已經(jīng)喝了一部分,你能根據(jù)它來提一個(gè)數(shù)學(xué)問題嗎?(隨機(jī)板書)

  預(yù)設(shè)1:瓶子還有多少水?(剩下多少水?)

  預(yù)設(shè)2:喝了多少水?(也就是瓶子的空氣部分。)

  預(yù)設(shè)3:這個(gè)瓶子一共能裝多少水?(也就是這個(gè)瓶子的容積是多少?)

  2.你覺得你能輕松解決什么問題?

  (1)預(yù)設(shè)1:瓶子有多少水?(怎么解決?)

  學(xué)生:瓶子里剩下的水呈圓柱狀,只要量出這個(gè)圓柱的底面直徑和高就能算出它的體積。

  教師:需要用到什么工具?(直尺)你想利用直尺得到哪些數(shù)據(jù)?(底面直徑、水的高度)

  小結(jié):知道了底面直徑和水的高度,要解決這個(gè)問題的確輕而易舉。請你準(zhǔn)備好直尺,或許等會(huì)兒有用哦!

  (2)預(yù)設(shè)2:喝了多少水?

  學(xué)生:喝掉部分的形狀是不規(guī)則,沒有辦法計(jì)算。

  教師:當(dāng)物體形狀不規(guī)則時(shí),我們想求出它的體積可以怎么辦?

  教師相機(jī)引導(dǎo):能否將空氣部分變成一個(gè)規(guī)則的立體圖形呢?

  學(xué)生能說出方法更好,不能說出則引導(dǎo):我們不妨把瓶子倒過來看看,你發(fā)現(xiàn)了什么?

  引導(dǎo)學(xué)生發(fā)現(xiàn):在瓶子倒置前后,水的體積不變,空氣的體積不變,因此,喝了多少水=倒置后空氣部分的體積,倒置后空氣部分是一個(gè)圓柱,要求出它的體積需要哪些數(shù)據(jù)?(倒置后空氣的高度)

  小結(jié):這個(gè)方法不錯(cuò),我們利用水的流動(dòng)性成功地將不規(guī)則的空氣部分轉(zhuǎn)化成了一個(gè)圓柱體,得到所需數(shù)據(jù)后能求出它的體積。這樣一來,第3個(gè)問題還難得到你嗎?

  (3)怎么求這個(gè)礦泉水瓶的容積?引導(dǎo)學(xué)生得出:倒置前水的體積+倒置后空氣的體積=瓶子容積。

  【設(shè)計(jì)意圖】課本中的例題呈現(xiàn)如下,

  例題是直接呈現(xiàn)轉(zhuǎn)化方法的,我是想先屏蔽相關(guān)數(shù)據(jù)信息和方法,通過激發(fā)學(xué)生解決問題的內(nèi)在需求,根據(jù)自己的生活學(xué)習(xí)經(jīng)驗(yàn)來想辦法解決,才有了對數(shù)學(xué)情境的改編,以期通過轉(zhuǎn)化、觀察、對比,讓學(xué)生發(fā)現(xiàn)倒置前后兩部分立體圖形之間的相同點(diǎn),溝通兩部分體積之間的內(nèi)在聯(lián)系,順利地把新知轉(zhuǎn)化為舊知,分散了難點(diǎn),從而找到解決問題的方法。

  3.小組合作,測量計(jì)算。

  (礦泉水瓶內(nèi)直徑為6cm)

  教師:方法找到了,接下來能否正確求出瓶子的容積就看你們的了!

  (1)課件出示:

  一個(gè)內(nèi)直徑是( )的瓶子里,水的高度是( ),把瓶蓋擰緊倒置放平,無水部分是圓柱形,高度是( )。這個(gè)瓶子的容積是多少?(測量時(shí)取整厘米數(shù))

  (2)四人小組合作:

  A.組長安排好分工:

  要量出所需數(shù)據(jù),其他組員要監(jiān)督好測量方法與結(jié)果是否正確,要按要求把題目填完整。

  B.組內(nèi)互相說一說:倒置前后哪兩部分的體積不變?

  礦泉水瓶的容積=( )+( )。

  C.做好以上準(zhǔn)備工作后,利用所得數(shù)據(jù)獨(dú)立計(jì)算,再組內(nèi)校對結(jié)果是否正確。

  【設(shè)計(jì)意圖】這一環(huán)節(jié)讓學(xué)生大膽動(dòng)手操作,在實(shí)踐中不斷發(fā)現(xiàn)解決問題,在同伴的交流中拓展自己的思維,讓學(xué)生在合作中建立協(xié)作精神。

  4.交流反饋。

  教師巡查,選擇礦泉水瓶中原有水高度分別6、7、8、9厘米的同學(xué)板演。

  瓶中水高度為6厘米的:

  3.14×(6÷2)2×6+3.14×(6÷2)2×13

  =3.14×9×(6+13)

  ≈537(毫升)。

  瓶中水高度為7厘米的:

  3.14×(6÷2)2×7+3.14×(6÷2)2×12

  =3.14×9×(7+12)

  ≈537(毫升)。

  瓶中水高度為8厘米的:

  3.14×(6÷2)2×8+3.14×(6÷2)2×11

  =3.14×9×(8+11)

  ≈537(毫升)。

  瓶中水高度為9厘米的:

  3.14×(6÷2)2×9+3.14×(6÷2)2×10

  =3.14×9×(9+10)

  ≈537(毫升)。

  教師:出示某品牌礦泉水瓶的標(biāo)簽,上面寫著凈含量為550毫升,基本符合。

  5.解答正確嗎?

  教師引導(dǎo)學(xué)生回顧反思:剛才我們是怎樣解決問題的?

  小結(jié):根據(jù)具體情況選擇合適的轉(zhuǎn)化方法,像這樣不規(guī)則立體圖形的體積可以轉(zhuǎn)化為規(guī)則的立體圖形來計(jì)算。

  【設(shè)計(jì)意圖】通過回顧解決問題的過程,幫助學(xué)生把本環(huán)節(jié)的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)進(jìn)行總結(jié),引導(dǎo)學(xué)生在后續(xù)的學(xué)習(xí)中碰到相似的問題也可同樣利用轉(zhuǎn)化的思想來解決。

  (三)練習(xí)鞏固,學(xué)以致用

  1.數(shù)學(xué)書P27做一做。

  (1)學(xué)生獨(dú)立思考,解決問題。

  (2)把自己的想法與同桌說一說。

  (3)交流反饋:重點(diǎn)交流如何轉(zhuǎn)化,倒置后哪兩部分體積不變?

  求小明喝了多少水實(shí)際上是求礦泉水瓶上面無水部分的體積,這部分為不規(guī)則的立體圖形。

  將水瓶倒置后不規(guī)則容器轉(zhuǎn)化成了圓柱:該圓柱體積=小明喝了的水。

  3.14×(6÷2)2×10=282.6(毫升)。

  2.輸液100毫升,每分鐘輸2.5毫升,請觀察第12分鐘時(shí)吊瓶圖像中的數(shù)據(jù)。問整個(gè)吊瓶的容積是多少毫升?

  (1)請學(xué)生計(jì)算,并反饋訂正。

  (2)反饋要點(diǎn):

  整個(gè)吊瓶容積=圖像中空氣部分的容積+還剩下液體的體積。

  根據(jù)圖象,可以得出在第12分鐘吊瓶有80毫升是空的。

  剩下液體的體積=100-2.5×12=70(毫升)。

  即整個(gè)吊瓶容積=80+70=150(毫升)。

  【設(shè)計(jì)意圖】從生活中常見的吊瓶問題引出,感受數(shù)學(xué)與生活的密切聯(lián)系,能根據(jù)圖像提取解決問題的有效信息 ,既提升了所學(xué)知識,又關(guān)注了學(xué)生的思考,培養(yǎng)學(xué)生的分析、解決問題能力。

  3.如下圖,一個(gè)底面周長為9.42厘米的圓柱體,從中間斜著截去一段后,它的體積是多少?

  (1)思考:這是一個(gè)不規(guī)則的立體圖形,要求它的體積,它不能像瓶子里的水一樣可以流動(dòng)變形轉(zhuǎn)化,怎么辦?

  (2)討論方法:

  A.重疊:假設(shè)把兩個(gè)大小一樣的斜截體拼成一個(gè)底面周長為9.42厘米,高為(4+6)厘米的圓柱,這個(gè)立體圖形的體積是新圓柱體積的一半。

  B.切割:把這個(gè)立體圖形分為兩部分,下面是一個(gè)底面周長為9.42厘米,高為4厘米的圓柱體,上面是一個(gè)高為(6-4)厘米的圓柱斜截體,且體積是高為(6-4)厘米的圓柱體積的一半。

  (3)用自己認(rèn)可的方法計(jì)算,并進(jìn)行反饋。

  解法一:3.14×(9.42÷3.14÷2)2×10÷2=35.325(立方厘米)。

  解法二: 3.14×(9.42÷3.14÷2)2×4+3.14×(9.42÷3.14÷2)2×2÷2=35.325(立方厘米)。

  (4)反饋小結(jié):可以有不同的轉(zhuǎn)化方法來解決問題。

  【設(shè)計(jì)意圖】不滿足于一種方法的轉(zhuǎn)化,展示多種方法,開拓學(xué)生的思維。

  (四)全課總結(jié),提升認(rèn)識

  教師:回憶一下,今天這節(jié)課有什么收獲?

  教師和學(xué)生共同小結(jié):求不規(guī)則的立體圖形的體積可以將它轉(zhuǎn)化成為規(guī)則的立體圖形,這節(jié)課我們主要是將不規(guī)則的立體圖形轉(zhuǎn)化成為圓柱,用圓柱的體積計(jì)算方法來解決問題。

  在解決問題時(shí),主要要弄清楚轉(zhuǎn)化前后兩部分之間的關(guān)系。

  【設(shè)計(jì)意圖】通過小結(jié),讓學(xué)生自主地對回顧本課所學(xué)知識進(jìn)行梳理總結(jié),通過歸納與提煉,讓學(xué)生明確轉(zhuǎn)化思想在數(shù)學(xué)學(xué)習(xí)中的重要性。

【《用圓柱的體積解決問題》教學(xué)設(shè)計(jì)】相關(guān)文章:

圓柱的體積教學(xué)設(shè)計(jì)09-01

《圓柱的體積》教學(xué)設(shè)計(jì)(15篇)05-16

《圓柱的體積》教學(xué)設(shè)計(jì)15篇05-13

《圓柱的體積》數(shù)學(xué)教學(xué)設(shè)計(jì)(精選13篇)11-09

《圓柱的體積》教學(xué)設(shè)計(jì)集錦15篇06-03

用反比例解決問題教學(xué)設(shè)計(jì)02-24

圓錐的體積教學(xué)設(shè)計(jì)03-02

《圓錐的體積》教學(xué)設(shè)計(jì)04-17

解決問題的教學(xué)設(shè)計(jì)10-12

[精華]圓錐的體積教學(xué)設(shè)計(jì)11-24