淺談中考數(shù)學(xué)復(fù)習(xí)技巧
導(dǎo)語:從某種程度上說,能不能復(fù)習(xí)得好,決定著能不能考得好。所以,搞好考前復(fù)習(xí)至關(guān)重要,輕視不得。接下來小編整理了淺談中考數(shù)學(xué)復(fù)習(xí)技巧,文章希望大家喜歡!
1.注重課堂學(xué)習(xí),提高效率。
在任課老師的指導(dǎo)下,通過課堂教學(xué),要求同學(xué)們掌握各知識點之間的內(nèi)在聯(lián)系,理清知識結(jié)構(gòu),形成整體的認識,通過對基礎(chǔ)知識的系統(tǒng)歸納,解題方法的歸類,在形成知識結(jié)構(gòu)的基礎(chǔ)上加深記憶,至少應(yīng)達到使自己準確掌握每個概念的含義,把平時學(xué)習(xí)中的模糊概念搞清楚,使知識掌握的更扎實的目的,要達到使自己明確每一個知識點在整個初中數(shù)學(xué)中的地位、聯(lián)系和應(yīng)用的目的。上課要會聽課,會記錄,必須要把握每一節(jié)課所講的知識重點,抓住關(guān)鍵,解決疑難,提高學(xué)習(xí)效率,根據(jù)個人的具體情況,課堂上及時查漏補缺。
2.夯實基礎(chǔ)知識,學(xué)會思考。
在歷年的數(shù)學(xué)中考試題中,基礎(chǔ)分值占的最多,再加上部分中檔題及較難題中的基礎(chǔ)分值,因此所占分值的比例就更大。我們必須扎扎實實地夯實基礎(chǔ),通過系統(tǒng)的復(fù)習(xí),我們對初中數(shù)學(xué)知識達到“理解”和“掌握”的要求,在應(yīng)用基礎(chǔ)知識時能做到熟練、正確和迅速。
有的考題會對需要考查的知識和方法創(chuàng)設(shè)一個新的.問題情境,特別是一些需要有較高區(qū)分度的試題更是如此;每個中檔以上難度的數(shù)學(xué)試題通常要涉及多個知識點、多種數(shù)學(xué)思想方法,或者在知識交匯點上巧妙設(shè)計試題。因此,我們每一個同學(xué)要學(xué)會思考,老師上課教給我們的是思考問題的角度、方法和策略,我們要用學(xué)到的方法和策略,在解決具有新情境問題的過程中,感悟出如何進行正確的思考。
3.注意知識的遷移,學(xué)會融會貫通。
課本中的某些例題、習(xí)題,并不是孤立的,而是前后聯(lián)系、密切相關(guān)的,其他學(xué)科的知識也和數(shù)學(xué)有著千絲萬縷的聯(lián)系,我們要學(xué)會從思維發(fā)展的最近點出發(fā),去發(fā)現(xiàn)、研究和展示這些知識的內(nèi)在聯(lián)系,這樣做不僅有助于自己深刻理解課本知識,有利于強化知識重點,更重要的是能有效地促進自己數(shù)學(xué)知識網(wǎng)絡(luò)和方法體系的構(gòu)建,使知識和能力產(chǎn)生良性遷移,達到觸類旁通的效果,通過探究課本典型例題、習(xí)題的內(nèi)在聯(lián)系,讓我們在深刻理解課本知識的同時,更有效地形成知識網(wǎng)絡(luò)與方法體系。例如一元二次方程的根的判別式,不但可以解決根的判定和已知根的情況求字母系數(shù),還可以解決二次三項式的因式分解、方程組的根的判定及二次函數(shù)圖象與橫軸的交點坐標。
4.復(fù)習(xí)形成梯度,選擇典型習(xí)題。
如果說第一階段是中考復(fù)習(xí)的基礎(chǔ),是重點,側(cè)重了雙基訓(xùn)練,那么第二階段的復(fù)習(xí)就是第一階段復(fù)習(xí)的延伸和提高,這個階段的練習(xí)題要選擇有一些難度的題,但又不是越難越好,難題做的越多越好,做題要有典型性,代表性,所選擇的難題是自己能夠逐步完成的,這樣才能既激發(fā)自己解難求進的學(xué)習(xí)欲望,又能使自己從解決較難問題中看到自己的力量,增強學(xué)習(xí)的信心,產(chǎn)生更強的求知欲望。
5.重視基礎(chǔ)知識,注重解題方法。
基礎(chǔ)知識就是初中數(shù)學(xué)課程中所涉及的概念、公式、公理、定理等。要求同學(xué)們掌握各知識點之間的內(nèi)在聯(lián)系,理清知識結(jié)構(gòu),形成整體的認識,并能綜合運用。每年的中考數(shù)學(xué)會出現(xiàn)一兩道難度較大,綜合性較強的數(shù)學(xué)問題,解決這類問題所用到的知識都是同學(xué)們學(xué)過的基礎(chǔ)知識,并不依賴于那些特別的,沒有普遍性的解題技巧。
中考數(shù)學(xué)命題除了著重考查基礎(chǔ)知識外,還十分重視對數(shù)學(xué)方法的考查,如配方法,待定系數(shù)法、判別式法等操作性較強的數(shù)學(xué)方法。在復(fù)習(xí)時應(yīng)對每一種方法的內(nèi)涵,它所適應(yīng)的題型,包括解題步驟都應(yīng)該熟練掌握!