- 相關(guān)推薦
中考數(shù)學(xué)模擬試題與答案
科學(xué)安排、合理利用,在這有限的時(shí)間內(nèi)中等以上的學(xué)生成績(jī)就會(huì)有明顯的提高,為了復(fù)習(xí)工作能夠科學(xué)有效,為了做好中考復(fù)習(xí)工作全面迎接中考,下文為各位考生準(zhǔn)備了2016年中考數(shù)學(xué)模擬試題。
A級(jí) 基礎(chǔ)題
1.(2013年浙江麗水)若二次函數(shù)y=ax2的圖象經(jīng)過(guò)點(diǎn)P(-2,4),則該圖象必經(jīng)過(guò)點(diǎn)()
A.(2,4) B.(-2,-4) C.(-4,2) D.(4,-2)
2.拋物線y=x2+bx+c的圖象先向右平移2個(gè)單位長(zhǎng)度,再向下平移3個(gè)單位長(zhǎng)度,所得圖象的函數(shù)解析式為y=(x-1)2-4,則b,c的值為()
A.b=2,c=-6 B.b=2,c=0 C.b=-6,c=8 D.b=-6,c=2
3.(2013年浙江寧波)如圖311,二次函數(shù)y=ax2+bx+c的圖象開(kāi)口向上,對(duì)稱軸為直線x=1,圖象經(jīng)過(guò)(3,0),下列結(jié)論中,正確的一項(xiàng)是()
A.abc0 B.2a+b0 C.a-b+c0 D.4ac-b20
4.(2013年山東聊城)二次函數(shù)y=ax2+bx的圖象如圖312,那么一次函數(shù)y=ax+b的圖象大致是()
5.(2013年四川內(nèi)江)若拋物線y=x2-2x+c與y軸的交點(diǎn)為(0,-3),則下列說(shuō)法不正確的是()
A.拋物線開(kāi)口向上 B.拋物線的對(duì)稱軸是x=1
C.當(dāng)x=1時(shí),y的最大值為-4 D.拋物線與x軸的交點(diǎn)為(-1,0),(3,0)
6.(2013年江蘇徐州)二次函數(shù)y=ax2+bx+c圖象上部分點(diǎn)的坐標(biāo)滿足下表:
x -3 -2 -1 0 1
y -3 -2 -3 -6 -11
則該函數(shù)圖象的頂點(diǎn)坐標(biāo)為()
A.(-3,-3) B.(-2,-2) C.(-1,-3) D.(0,-6)
7.(2013年湖北黃石)若關(guān)于x的函數(shù)y=kx2+2x-1與x軸僅有一個(gè)公共點(diǎn),則實(shí)數(shù)k的值為_(kāi)_________.
8.(2013年北京)請(qǐng)寫(xiě)出一個(gè)開(kāi)口向上,并且與y軸交于點(diǎn)(0,1)的拋物線的解析式______________.
9.(2013年浙江湖州)已知拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)A(3,0),B(-1,0).
(1)求拋物線的解析式;
(2)求拋物線的頂點(diǎn)坐標(biāo).
B級(jí) 中等題
10.(2013年江蘇蘇州)已知二次函數(shù)y=x2-3x+m(m為常數(shù))的圖象與x軸的一個(gè)交點(diǎn)為(1,0),則關(guān)于x的一元二次方程x2-3x+m=0的兩實(shí)數(shù)根是()
A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3
11.(2013年四川綿陽(yáng))二次函數(shù)y=ax2+bx+c的圖象如圖313,給出下列結(jié)論:①2a+b②b③若-1
12.(2013年廣東)已知二次函數(shù)y=x2-2mx+m2-1.
(1)當(dāng)二次函數(shù)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O(0,0)時(shí),求二次函數(shù)的解析式;
(2)如圖314,當(dāng)m=2時(shí),該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為D,求C,D兩點(diǎn)的坐標(biāo);
(3)在(2)的條件下,x軸上是否存在一點(diǎn)P,使得PC+PD最短?若P點(diǎn)存在,求出P點(diǎn)的坐標(biāo);若P點(diǎn)不存在,請(qǐng)說(shuō)明理由.
C級(jí) 拔尖題
13.(2013年黑龍江綏化)如圖315,已知拋物線y=1a(x-2)(x+a)(a0)與x軸交于點(diǎn)B,C,與y軸交于點(diǎn)E,且點(diǎn)B在點(diǎn)C的左側(cè).
(1)若拋物線過(guò)點(diǎn)M(-2,-2),求實(shí)數(shù)a的值;
(2)在(1)的條件下,解答下列問(wèn)題;
、偾蟪觥鰾CE的面積;
、谠趻佄锞的對(duì)稱軸上找一點(diǎn)H,使CH+EH的值最小,直接寫(xiě)出點(diǎn)H的坐標(biāo).
14.(2012年廣東肇慶)已知二次函數(shù)y=mx2+nx+p圖象的頂點(diǎn)橫坐標(biāo)是2,與x軸交于A(x1,0),B(x2,0),x10
(1)求證:n+4m=0;
(2)求m,n的值;
(3)當(dāng)p0且二次函數(shù)圖象與直線y=x+3僅有一個(gè)交點(diǎn)時(shí),求二次函數(shù)的最大值.
15.(2013年廣東湛江)如圖316,在平面直角坐標(biāo)系中,頂點(diǎn)為(3,4)的拋物線交y軸于A點(diǎn),交x軸與B,C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知A點(diǎn)坐標(biāo)為(0,-5).
(1)求此拋物線的解析式;
(2)過(guò)點(diǎn)B作線段AB的垂線交拋物線于點(diǎn)D,如果以點(diǎn)C為圓心的圓與直線BD相切,請(qǐng)判斷拋物線的對(duì)稱軸與⊙C的位置關(guān)系,并給出證明;
(3)在拋物線上是否存在一點(diǎn)P,使△ACP是以AC為直角邊的直角三角形.若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
參考答案
1.A
2.B 解析:利用反推法解答, 函數(shù)y=(x-1)2-4的頂點(diǎn)坐標(biāo)為(1,-4),其向左平移2個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度,得到函數(shù)y=x2+bx+c,又∵1-2=-1,-4+3=-1,平移前的函數(shù)頂點(diǎn)坐標(biāo)為(-1,-1),函數(shù)解析式為y=(x+1)2-1,即y=x2+2x,b=2,c=0.
3.D 4.C 5.C 6.B
7.k=0或k=-1 8.y=x2+1(答案不唯一)
9.解:(1)∵拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)A(3,0),B(-1,0),
拋物線的解析式為y=-(x-3)(x+1),
即y=-x2+2x+3.
(2)∵y=-x2+2x+3=-(x-1)2+4,
拋物線的頂點(diǎn)坐標(biāo)為(1,4).
10.B 11.①③④
12.解:(1)將點(diǎn)O(0,0)代入,解得m=1,
二次函數(shù)關(guān)系式為y=x2+2x或y=x2-2x.
(2)當(dāng)m=2時(shí),y=x2-4x+3=(x-2)2-1,
D(2,-1).當(dāng)x=0時(shí),y=3,C(0,3).
(3)存在.接連接C,D交x軸于點(diǎn)P,則點(diǎn)P為所求.
由C(0,3),D(2,-1)求得直線CD為y=-2x+3.
當(dāng)y=0時(shí),x=32,P32,0.
13.解:(1)將M(-2,-2)代入拋物線解析式,得
-2=1a(-2-2)(-2+a),
解得a=4.
(2)①由(1),得y=14(x-2)(x+4),
當(dāng)y=0時(shí),得0=14(x-2)(x+4),
解得x1=2,x2=-4.
∵點(diǎn)B在點(diǎn)C的左側(cè),B(-4,0),C(2,0).
當(dāng)x=0時(shí),得y=-2,即E(0,-2).
S△BCE=1262=6.
②由拋物線解析式y(tǒng)=14(x-2)(x+4),得對(duì)稱軸為直線x=-1,
根據(jù)C與B關(guān)于拋物線對(duì)稱軸x=-1對(duì)稱,連接BE,與對(duì)稱軸交于點(diǎn)H,即為所求.
設(shè)直線BE的解析式為y=kx+b,
將B(-4,0)與E(0,-2)代入,得-4k+b=0,b=-2,
解得k=-12,b=-2.直線BE的解析式為y=-12x-2.
將x=-1代入,得y=12-2=-32,
則點(diǎn)H-1,-32.
14.(1)證明:∵二次函數(shù)y=mx2+nx+p圖象的頂點(diǎn)橫坐標(biāo)是2,
拋物線的對(duì)稱軸為x=2,即-n2m=2,
化簡(jiǎn),得n+4m=0.
(2)解:∵二次函數(shù)y=mx2+nx+p與x軸交于A(x1,0),B(x2,0),x10
OA=-x1,OB=x2,x1+x2=-nm,x1x2=pm.
令x=0,得y=p,C(0,p).OC=|p|.
由三角函數(shù)定義,得tanCAO=OCOA=-|p|x1,tanCBO=OCOB=|p|x2.
∵tanCAO-tanCBO=1,即-|p|x1-|p|x2=1.
化簡(jiǎn),得x1+x2x1x2=-1|p|.
將x1+x2=-nm,x1x2=pm代入,得-nmpm=-1|p|化簡(jiǎn),得n=p|p|=1.
由(1)知n+4m=0,
當(dāng)n=1時(shí),m=-14;當(dāng)n=-1時(shí),m=14.
m,n的值為:m=14,n=-1(此時(shí)拋物線開(kāi)口向上)或m=-14,n=1(此時(shí)拋物線開(kāi)口向下).
(3)解:由(2)知,當(dāng)p0時(shí),n=1,m=-14,
拋物線解析式為:y=-14x2+x+p.
聯(lián)立拋物線y=-14x2+x+p與直線y=x+3解析式得到-14x2+x+p=x+3,
化簡(jiǎn),得x2-4(p-3)=0.
∵二次函數(shù)圖象與直線y=x+3僅有一個(gè)交點(diǎn),
一元二次方程根的判別式等于0,
即=02+16(p-3)=0,解得p=3.
y=-14x2+x+3=-14(x-2)2+4.
當(dāng)x=2時(shí),二次函數(shù)有最大值,最大值為4.
15.解:(1)設(shè)此拋物線的解析式為y=a(x-3)2+4,
此拋物線過(guò)點(diǎn)A(0,-5),
-5=a(0-3)2+4,a=-1.
拋物線的解析式為y=-(x-3)2+4,
即y=-x2+6x-5.
(2)拋物線的對(duì)稱軸與⊙C相離.
證明:令y=0,即-x2+6x-5=0,得x=1或x=5,
B(1,0),C(5,0).
設(shè)切點(diǎn)為E,連接CE,
由題意,得,Rt△ABO∽R(shí)t△BCE.
ABBC=OBCE,即12+524=1CE,
解得CE=426.
∵以點(diǎn)C為圓心的圓與直線BD相切,⊙C的半徑為r=d=426.
又點(diǎn)C到拋物線對(duì)稱軸的距離為5-3=2,而2426.
則此時(shí)拋物線的對(duì)稱軸與⊙C相離.
(3)假設(shè)存在滿足條件的點(diǎn)P(xp,yp),
∵A(0,-5),C(5,0),
AC2=50,
AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.
、佼(dāng)A=90時(shí),在Rt△CAP中,
由勾股定理,得AC2+AP2=CP2,
50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,
整理,得xp+yp+5=0.
∵點(diǎn)P(xp,yp)在拋物線y=-x2+6x-5上,
yp=-x2p+6xp-5.
xp+(-x2p+6xp-5)+5=0,
解得xp=7或xp=0,yp=-12或yp=-5.
點(diǎn)P為(7,-12)或(0,-5)(舍去).
、诋(dāng)C=90時(shí),在Rt△ACP中,
由勾股定理,得AC2+CP2=AP2,
50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,
整理,得xp+yp-5=0.
∵點(diǎn)P(xp,yp)在拋物線y=-x2+6x-5上,
yp=-x2p+6xp-5,
xp+(-x2p+6xp-5)-5=0,
解得xp=2或xp=5,yp=3或yp=0.
點(diǎn)P為(2,3)或(5,0)(舍去)
綜上所述,滿足條件的點(diǎn)P的坐標(biāo)為(7,-12)或(2,3).
【中考數(shù)學(xué)模擬試題與答案】相關(guān)文章:
中考英語(yǔ)各類試題及答案09-25
2017安徽中考語(yǔ)文試題及答案09-26
西學(xué)中考試試題及答案04-13
2022無(wú)錫中考數(shù)學(xué)試題及答案11-03
2017中考英語(yǔ)仿真練習(xí)試題(含答案)09-26
2017濟(jì)南中考語(yǔ)文試卷試題(含答案解析)09-26
2014年廣州中考英語(yǔ)模擬試題與答案(word版)09-25
2014年廣州中考英語(yǔ)模擬試題與答案(word版)09-25
閱讀理解試題及答案11-14