成年人在线观看视频免费,国产第2页,人人狠狠综合久久亚洲婷婷,精品伊人久久

我要投稿 投訴建議

《幾何原本》讀后感

時間:2024-06-12 09:08:46 讀后感 我要投稿
  • 相關(guān)推薦

《幾何原本》讀后感

  當(dāng)賞讀完一本名著后,你有什么領(lǐng)悟呢?記錄下來很重要哦,一起來寫一篇讀后感吧。為了讓您不再為寫讀后感頭疼,以下是小編為大家整理的《幾何原本》讀后感,僅供參考,歡迎大家閱讀。

《幾何原本》讀后感

《幾何原本》讀后感1

  有這樣一本書,它的思想影響過無數(shù)科學(xué)家,它的邏輯至今還被世界推崇,它的作者因它而成為數(shù)學(xué)鼻祖。它就是古希臘著名數(shù)學(xué)家歐幾里得所撰寫的《幾何原本》。

  《幾何原本》這本書以幾個看似簡單的公理和公設(shè)出發(fā),推導(dǎo)了大量復(fù)雜且不可錯的數(shù)學(xué)定理,影響后世近千年,甚至成為了世界所有國家的教科書。它的內(nèi)容通俗易懂,不需要我們有太多的數(shù)學(xué)基礎(chǔ),只要認(rèn)真研讀,必定大有裨益。

  首先,《幾何原本》帶給我們的便是數(shù)學(xué)思維,從七年級開始我們就學(xué)習(xí)了幾何。如果你沒有掌握幾何推導(dǎo)的過程,那書中一步一步的邏輯推導(dǎo)就能夠大大訓(xùn)練我們的反應(yīng)力和觀察力。其中讓我映象深刻的還是書中第5章的一個命題,眾所周知最大公因數(shù)是指公因數(shù)中最大的,但如何求最大公因數(shù)呢?是一個數(shù)一個數(shù)的嘗試,那也成了瞎子過河——摸不著邊了吧,書中就給出了辦法就是兩數(shù)相減,差又和減數(shù)相減,直到差為0,則他們的最大公因數(shù)便是上個式子的差,這就是著名的輾轉(zhuǎn)相除法。那么里面的思想便可見一斑。當(dāng)你成功做出了一個命題的時候,你獲得的除了知識本身以外,你的成就感必定難以言表。它還可以帶給你許多的知識,有數(shù)學(xué)方面的,著名的還要數(shù)第一章的一個命題,它講到等腰三角形兩底角相等,這個結(jié)論我們似乎早已習(xí)以為常,但為什么呢?這本書就可以帶給你答案。生活中無數(shù)的人就對周邊的一切麻木了,就像一個機(jī)器人一般,提不起興趣,實(shí)則不然,不是沒有,而是你沒有善于發(fā)現(xiàn)。但《幾何原本》便能激發(fā)你對周圍事物的好奇心,對一個問題產(chǎn)生刨根問底的精神,更有對結(jié)論進(jìn)行闡述的能力。除了數(shù)學(xué)方面,尤為重要的還是它訓(xùn)練你的頭腦,打開新世界的大門。世界數(shù)學(xué)大師丘成桐就說過:歐幾里得的定理不見得對社會有直接貢獻(xiàn),可它的推理方式確是最有效的邏輯訓(xùn)練。將來你無論是做科學(xué)家,政治家,還是一個成功的商人,都需要有系統(tǒng)的訓(xùn)練?梢姟稁缀卧尽愤@一本書對所有的青少年來說都是最甘甜的養(yǎng)料,給予給我們的比你想象的要更多。你讀它可以是喜愛數(shù)學(xué),從中汲取數(shù)學(xué)的養(yǎng)分,可以是體會里面的邏輯思維,幫助你學(xué)會思考問題,也可以是無聊時間里的一本趣味小說,同兩千年前的歐幾里得探討世界的奧秘。

  不管怎么樣,如果你缺少信心和勇氣,如果你需要異于常人的智慧,如果你沒有生活的目標(biāo),那一定要讀讀這本名著,他就像我們的人生導(dǎo)師,手把手,耐心的`教導(dǎo)我們,給我們通往成功的鑰匙,激發(fā)我們對科學(xué)的熱愛。如今我們的中國已經(jīng)站在了世界的前面,但某些方面還是缺少一些人才。所以,我有理由有信心相信只要我們一絲不茍的讀一讀《幾何原本》,體會其中的思想,養(yǎng)成對事物的好奇心與興趣。我們以后不管從事什么行業(yè),都一定對你自己有更好的思考能力,對社會有更大的作用,對祖國的未來有更好的貢獻(xiàn)。科教興國的大旗就抗我們青少年的肩上,讓我們以《幾何原本》為舟,在科學(xué)與真理的大海中暢游,成就自己向往的未來吧!

《幾何原本》讀后感2

  今天我讀了一本書,叫《幾何原本》。它是古希臘數(shù)學(xué)家、哲學(xué)家歐幾里德的一本不朽之作,集合希臘數(shù)學(xué)家的成果和精神于一書。

  《幾何原本》收錄了原著13卷全部內(nèi)容,包含了5條公理、5條公設(shè)、23個定義和467個命題,即先提出公理、公設(shè)和定義,再由簡到繁予以證明,并在此基礎(chǔ)上形成歐氏幾何學(xué)體系。歐幾里德認(rèn)為,數(shù)學(xué)是一個高貴的世界,即使身為世俗的君主,在這里也毫無特權(quán)。與時間中速朽的物質(zhì)相比,數(shù)學(xué)所揭示的世界才是永恒的。

  《幾何原本》既是數(shù)學(xué)著作,又極富哲學(xué)精神,并第一次完成了人類對空間的認(rèn)識。古希臘數(shù)學(xué)脫胎于哲學(xué),它使用各種可能的.描述,解析了我們的宇宙,使它不在混沌、分離,它完全有別于起源并應(yīng)用于世俗的中國和古埃及數(shù)學(xué)。它建立起物質(zhì)與精神世界的確定體系,致使渺小如人類也能從中獲得些許自信。

  本書命題1便提出了如何作等邊三角形,由此產(chǎn)生了三角形全等定理。即角、邊、角或邊、角、邊或邊、邊、邊相等,并進(jìn)一步提出了等腰三角形——等邊即等角;等角即等邊。就這樣歐幾里德分別從點(diǎn)、線、面、角四個部分,由淺入深,提出了自己的幾何理論。前面的命題為后面的鋪墊;后面的命題由前面的推導(dǎo),環(huán)環(huán)相扣,十分嚴(yán)謹(jǐn)。

  這本書博大精深,我只能看懂十分之一左右,非常震撼,歐幾里德不愧為幾何之父!他就是數(shù)學(xué)史上最亮的一顆星。我要向他學(xué)習(xí),沿著自己的目標(biāo)堅(jiān)定的走下去。

《幾何原本》讀后感3

  讀《幾何原本》的作者歐幾里得能夠代表整個古希臘人民,那么我可以說,古希臘是古代文化中最燦爛的一支——因?yàn)楣畔ED的數(shù)學(xué)中,所包含的不僅僅是數(shù)學(xué),還有著難得的邏輯,更有著耐人尋味的哲學(xué)。

  《幾何原本》這本數(shù)學(xué)著作,以幾個顯而易見、眾所周知的定義、公設(shè)和公理,互相搭橋,展開了一系列的命題:由簡單到復(fù)雜,相輔而成。其邏輯的嚴(yán)密,不能不令我們佩服。

  就我目前拜訪的幾個命題來看,歐幾里得證明關(guān)于線段“一樣長”的題,最常用、也是最基本的,便是畫圓:因?yàn),一個圓的所有半徑都相等。一般的數(shù)學(xué)思想,都是很復(fù)雜的,這邊剛講一點(diǎn),就又跑到那邊去了;

  而《幾何原本》非常容易就被我接受,其原因大概就在于歐幾里得反復(fù)運(yùn)用一種思想、使讀者不斷接受的緣故吧。

  不過,我要著重講的,是他的哲學(xué)。

  書中有這樣幾個命題:如,“等腰三角形的兩底角相等,將腰延長,與底邊形成的兩個補(bǔ)角亦相等”,再如,“如果在一個三角形里,有兩個角相等,那么也有兩條邊相等”。

  這些命題,我在讀時,內(nèi)心一直承受著幾何外的'震撼。

  我們七年級已經(jīng)學(xué)了幾何。想想那時做這類證明題,需要證明一個三角形中的兩個角相等的時候,我們總是會這么寫:“因?yàn)樗且粋等腰三角形,所以兩底角相等”——我們總是習(xí)慣性的認(rèn)為,等腰三角形的兩個底角就是相等的;

  而看《幾何原本》,他思考的是“等腰三角形的兩個底角為什么相等”。

  想想看吧,一個思想習(xí)以為常,一個思想在思考為什么,這難道還不夠說明現(xiàn)代人的問題嗎?

  大多數(shù)現(xiàn)代人,好奇心似乎已經(jīng)泯滅了。這里所說的好奇心不單單是指那種對新奇的事物感興趣,同樣指對平常的事物感興趣。

  比如說,許多人會問“宇航員在空中為什么會飄起來”,但也許不會問“我們?yōu)槭裁茨軌蛘驹诘厣隙粫h起來”;

  許多人會問“吃什么東西能減肥”,但也許不會問“羊?yàn)槭裁闯圆荻怀匀狻薄?/p>

  我們對身邊的事物太習(xí)以為常了,以致不會對許多“平!钡氖挛锔信d趣,進(jìn)而去琢磨透它。牛頓為什么會發(fā)現(xiàn)萬有引力?很大一部分原因,就在于他有好奇心。

  如果僅把《幾何原本》當(dāng)做數(shù)學(xué)書看,那可就大錯特錯了:因?yàn)楣畔ED的數(shù)學(xué)滲透著哲學(xué),學(xué)數(shù)學(xué),就是學(xué)哲學(xué)。

  哲學(xué)第一課:人要建立好奇心,不僅探索新奇的事物,更要探索身邊的平常事,這就是我讀《幾何原本》意外的收獲吧!

《幾何原本》讀后感4

  只要上過初中的人都學(xué)過幾何,可是不一定知道把幾何介紹到中國來的是明朝的大科學(xué)家徐光啟和來自意大利的傳教士利瑪竇,更不一定知道是徐光啟把這門“測地學(xué)”創(chuàng)造性地意譯為“幾何”的。從1667年《幾何原本》前六卷譯完至今已有四百年,11月9日上海等地舉行了形式多樣的紀(jì)念活動。來自意大利、美國、加拿大、法國、日本、比利時、芬蘭、荷蘭、中國等9個國家及兩岸四地的60余位中外學(xué)者聚會徐光啟的安息之地——上海徐匯區(qū),紀(jì)念徐光啟暨《幾何原本》翻譯出版400周年。

  “一物不知,儒者之恥!

  徐光啟家世平凡,父親是一個不成功的商人,破產(chǎn)后在上海務(wù)農(nóng),家境不佳。徐光啟19歲時中秀才,過了16年才中舉人,此后又7年才中進(jìn)士。在參加翰林院選拔時列第四名,即被選為翰林院庶吉士,相當(dāng)于是明帝國皇家學(xué)院的博士研究生。他殿試排名三甲五十二名,名次靠后,照理沒有資格申請入翰林院。他的同科進(jìn)士、也是他年滿花甲的老師黃體仁主動讓賢,把考翰林院的機(jī)會讓給了他。

  《明史·徐光啟傳》中開篇用33個字講完他的科舉經(jīng)歷,緊接著就說他“從西洋人利瑪竇學(xué)天文、歷算、火器,盡其術(shù)。遂遍習(xí)兵機(jī)、屯田、鹽策、水利諸書”,可見如果沒有跟隨利瑪竇學(xué)習(xí)西方科學(xué),徐光啟只是有明一代數(shù)以千萬計(jì)的官僚中不出奇的一員。但是因?yàn)樵?600年遇上了利瑪竇,且在翰林院學(xué)習(xí)期間有機(jī)會從學(xué)于利瑪竇,他得從一干庸眾中脫穎而出。

  利瑪竇(MatteoRicci)1552年生于意大利馬切拉塔,1571年在羅馬成為耶穌會的見習(xí)修士,在教會里接受了神學(xué)、古典文學(xué)和自然科學(xué)的廣泛訓(xùn)練,又在印度的果阿學(xué)會了繪制地圖和制造各類科學(xué)儀器,尤其是天文儀器。

  利瑪竇于1577年5月離開羅馬,于1583年2月來到中國。8月在廣東肇慶建立“仙花寺”,開始傳教?墒且婚_始很不順利。為此,利瑪竇轉(zhuǎn)變了策略,決定采取曲線傳教的方針,為了接近中國人,利瑪竇不僅說中文,寫漢字,而且生活也力求中國化。正式服裝也改成了寬衣博帶的儒生裝束。

  1598年6月利瑪竇去北京見皇帝,未能見到,次年返回南京。在南京期間,利瑪竇早已赫赫有名,尤其是他過目不忘、倒背如流的記憶術(shù)給人留下了深刻的印象,一傳十,十傳百,已神乎其神。加之利瑪竇高明的社交手段,以及他的那些引人入勝的、代表著西方工藝水平的工藝品和科學(xué)儀器,引得高官顯貴和名士文人都樂于和他交往。利瑪竇則借此來達(dá)到自己的目的——推動傳教活動。

  也正是利瑪竇的學(xué)識和魅力吸引了徐光啟。根據(jù)利瑪竇的日記記載,約在1597年7月到1600年5月之間。徐光啟和利瑪竇曾見過一面,利瑪竇說這是一次短暫的.見面。徐光啟主要向利瑪竇討教一些基督教教義,雙方并沒有深談。和利瑪竇分手之后,徐光啟花了兩三年時間研究基督教義,思考自己的命運(yùn)。1603年,徐光啟再次去找利瑪竇,但利瑪竇這時已經(jīng)離開南京到北京去了。徐光啟拜見了留在南京的傳教士羅如望,和之長談數(shù)日后,終于受洗成為了基督教徒。

  1601年1月,利瑪竇再次晉京面圣,此次獲得成功,利瑪竇帶來的見面禮是自鳴鐘和鋼琴,這兩樣?xùn)|西是要經(jīng)常修理的,于是他被要求留在京城,以便可以經(jīng)常為皇帝修理這兩樣?xùn)|西。正好1604年4月,徐光啟中進(jìn)士后要留在北京。兩人的交往也多起來。在此之前,徐光啟對中國傳統(tǒng)數(shù)字已有較深入的了解,他跟利瑪竇學(xué)習(xí)了西方科技后,向利瑪竇請求合作翻譯《幾何原本》,以克服傳統(tǒng)數(shù)學(xué)只言“法”而不言“義”的缺陷,認(rèn)為“此書未譯,則他書俱不可得論!崩敻]勸他不要沖動,因?yàn)榉g實(shí)在太難,徐光啟回答說:“一物不知,儒者之恥!

《幾何原本》讀后感5

  在文藝復(fù)興以后的歐洲,代數(shù)學(xué)由于受到阿拉伯的影響而迅速發(fā)展。另一方面,17世紀(jì)以后,數(shù)學(xué)分析的發(fā)展非常顯著。因此,幾何學(xué)也擺脫了和代數(shù)學(xué)相隔離的狀態(tài)。正如在其名著《幾何學(xué)》中所說的一樣,數(shù)與圖形之間存在著密切的關(guān)系,在空間設(shè)立坐標(biāo),而且以數(shù)與數(shù)之間關(guān)系來表示圖形;反過來,可把圖形表示成為數(shù)與數(shù)之間的關(guān)系。這樣,按照坐標(biāo)把圖形改成數(shù)與數(shù)之間的關(guān)系問題而對之進(jìn)行處理,這個方法稱為解析幾何。恩格斯在其《自然辯證法》中高度評價了笛卡兒的工作,他指出:“數(shù)學(xué)中的轉(zhuǎn)折點(diǎn)是笛卡兒的變數(shù),有了變數(shù),運(yùn)動進(jìn)入了數(shù)學(xué),有了變數(shù),辯證法進(jìn)入了數(shù)學(xué),有了變數(shù),微分和積分也就成為必要的。了……”

  事實(shí)上,笛卡兒的思想為17世紀(jì)數(shù)學(xué)分析的發(fā)展提供了有力的基礎(chǔ)。到了18世紀(jì),解析幾何由于L。歐拉等人的開拓得到迅速的發(fā)展,連希臘時代的阿波羅尼奧斯(約公元前262~約前190)等人探討過的圓錐曲線論,也重新被看成為二次曲線論而加以代數(shù)地整理。另外,18世紀(jì)中發(fā)展起來的數(shù)學(xué)分析反過來又被應(yīng)用到幾何學(xué)中去,在該世紀(jì)末期,G。蒙日首創(chuàng)了數(shù)學(xué)分析對于幾何的應(yīng)用,而成為微分幾何的先驅(qū)者。如上所述,用解析幾何的方法可以討論許多幾何問題。但是不能說,這對于所有問題都是最適用的。同解析幾何方法相對立的,有綜合幾何或純粹幾何方法,它是不用坐標(biāo)而直接考察圖形的方法,數(shù)學(xué)家歐幾里得幾何本來就是如此。射影幾何是在這思想方法指導(dǎo)下的產(chǎn)物。

  早在文藝復(fù)興時期的意大利盛行而且發(fā)展了造型美術(shù),與它隨伴而來的`有所謂透視圖法的研究,當(dāng)時有過許多人包括達(dá)·芬奇在內(nèi)把這個透視圖法作為實(shí)用幾何進(jìn)行了研究。從17世紀(jì)起,G。德扎格、B。帕斯卡把這個透視圖法加以推廣和發(fā)展,從而奠定了射影幾何。分別以他們命名的兩個定理,成了射影幾何的基礎(chǔ)。其一是德扎格定理:如果平面上兩個三角形的對應(yīng)頂點(diǎn)的連線相會于一點(diǎn),那么它們的對應(yīng)邊的交點(diǎn)在一直線上;而且反過來也成立。其二是帕斯卡定理:如果一個六角形的頂點(diǎn)在同一圓錐曲線上,那么它的三對對邊的交點(diǎn)在同一直線上;而且反過來也成立。18世紀(jì)以后,J。—V。彭賽列、Z。N。M。嘉諾、J。施泰納等完成了這門幾何學(xué)。

《幾何原本》讀后感6

  古希臘大數(shù)學(xué)家歐幾里德是與他的巨著——《幾何原本》一起名垂千古的。這本書是世界上最著名、最完整而且流傳最廣的數(shù)學(xué)著作,也是歐幾里德最有價值的一部著作,在《原本》里,歐幾里德系統(tǒng)地總結(jié)了古代勞動人民和學(xué)者們在實(shí)踐和思考中獲得的幾何知識,歐幾里德把人們公認(rèn)的一些事實(shí)列成定義和公理,以形式邏輯的方法,用這些定義和公理來研究各種幾何圖形的性質(zhì),從而建立了一套從公理、定義出發(fā),論證命題得到定理得幾何學(xué)論證方法,形成了一個嚴(yán)密的邏輯體系——幾何學(xué)。而這本書,也就成了歐式幾何的`奠基之作。

  兩千多年來,《幾何原本》一直是學(xué)習(xí)幾何的主要教材。哥白尼、伽利略、笛卡爾、牛頓等許多偉大的學(xué)者都曾學(xué)習(xí)過《幾何原本》,從中吸取了豐富的營養(yǎng),從而作出了許多偉大的成就。

  從歐幾里得發(fā)表《幾何原本》到現(xiàn)在,已經(jīng)過去了兩千多年,盡管科學(xué)技術(shù)日新月異,由于歐氏幾何具有鮮明的直觀性和有著嚴(yán)密的邏輯演繹方法相結(jié)合的特點(diǎn),在長期的實(shí)踐中表明,它巳成為培養(yǎng)、提高青少年邏輯思維能力的好教材。歷史上不知有多少科學(xué)家從學(xué)習(xí)幾何中得到益處,從而作出了偉大的貢獻(xiàn)。

  少年時代的牛頓在劍橋大學(xué)附近的夜店里買了一本《幾何原本》。開始他認(rèn)為這本書的內(nèi)容沒有超出常識范圍,因而并沒有認(rèn)真地去讀它,而對笛卡兒的“坐標(biāo)幾何”很感興趣而專心攻讀,后來,牛頓于1664年4月在參加特列臺獎學(xué)金考試的時候遭到落選,當(dāng)時的考官巴羅博士對他說:“因?yàn)槟愕膸缀位A(chǔ)知識太貧乏,無論怎樣用功也是不行的!边@席談話對牛頓的震動很大,于是,牛頓又重新把《幾何原本》從頭到尾地反復(fù)進(jìn)行了深入鉆研,為以后的科學(xué)工作打下了堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ)。

  但是,在人類認(rèn)識的長河中,無論怎樣高明的前輩和名家。都不可能把問題全部解決。由于歷史條件的限制,歐幾里得在《幾何原本》中提出幾何學(xué)的“根據(jù)”問題并沒有得到徹底的解決,他的理論體系并不是完美無缺的。比如,對直線的定義實(shí)際上是用一個未知的定義來解釋另一個未知的定義,這樣的定義不可能在邏輯推理中起什么作用。又如,歐幾里得在邏輯推理中使用了“連續(xù)”的概念,但是在《幾何原本》中從未提到過這個概念。

《幾何原本》讀后感7

  古希臘大數(shù)學(xué)家歐幾里德是和他的巨著——《幾何原本》一起名垂千古的。這本書是世界上最著名、最完整而且流傳最廣的數(shù)學(xué)著作,也是歐幾里德最有價值的一部著作。在《原本》里,歐幾里德系統(tǒng)地總結(jié)了古代勞動人民和學(xué)者們在實(shí)踐和思考中獲得的幾何知識,歐幾里德把人們公認(rèn)的一些事實(shí)列成定義和公理,以形式邏輯的方法,用這些定義和公理來研究各種幾何圖形的性質(zhì),從而建立了一套從公理、定義出發(fā),論證命題得到定理得幾何學(xué)論證方法,形成了一個嚴(yán)密的邏輯體系——幾何學(xué)。而這本書,也就成了歐式幾何的奠基之作。

  兩千多年來,《幾何原本》一直是學(xué)習(xí)幾何的主要教材。哥白尼、伽利略、笛卡爾、牛頓等許多偉大的學(xué)者都曾學(xué)習(xí)過《幾何原本》,從中吸取了豐富的'營養(yǎng),從而作出了許多偉大的成就。

  從歐幾里得發(fā)表《幾何原本》到現(xiàn)在,已經(jīng)過去了兩千多年,盡管科學(xué)技術(shù)日新月異,由于歐氏幾何具有鮮明的直觀性和有著嚴(yán)密的邏輯演繹方法相結(jié)合的特點(diǎn),在長期的實(shí)踐中表明,它巳成為培養(yǎng)、提高青少年邏輯思維能力的好教材。歷史上不知有多少科學(xué)家從學(xué)習(xí)幾何中得到益處,從而作出了偉大的貢獻(xiàn)。

  少年時代的牛頓在劍橋大學(xué)附近的夜店里買了一本《幾何原本》,開始他認(rèn)為這本書的內(nèi)容沒有超出常識范圍,因而并沒有認(rèn)真地去讀它,而對笛卡兒的“坐標(biāo)幾何”很感興趣而專心攻讀。后來,牛頓于1664年4月在參加特列臺獎學(xué)金考試的時候遭到落選,當(dāng)時的考官巴羅博士對他說:“因?yàn)槟愕膸缀位A(chǔ)知識太貧乏,無論怎樣用功也是不行的!

  這席談話對牛頓的震動很大。于是,牛頓又重新把《幾何原本》從頭到尾地反復(fù)進(jìn)行了深入鉆研,為以后的科學(xué)工作打下了堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ)。

  但是,在人類認(rèn)識的長河中,無論怎樣高明的前輩和名家,都不可能把問題全部解決。由于歷史條件的限制,歐幾里得在《幾何原本》中提出幾何學(xué)的“根據(jù)”問題并沒有得到徹底的解決,他的理論體系并不是完美無缺的。比如,對直線的定義實(shí)際上是用一個未知的定義來解釋另一個未知的定義,這樣的定義不可能在邏輯推理中起什么作用。又如,歐幾里得在邏輯推理中使用了“連續(xù)”的概念,但是在《幾何原本》中從未提到過這個概念。

《幾何原本》讀后感8

  《幾何原本》作為數(shù)學(xué)的圣經(jīng),第一部系統(tǒng)的數(shù)學(xué)著作,牛頓,愛因斯坦,就是以這種形式寫的《自然哲學(xué)的數(shù)學(xué)原理》和《相對論》,斯賓諾莎寫出哲學(xué)著作《倫理學(xué)》,倫理學(xué)可以作為哲學(xué)與社會科學(xué)以及心理學(xué)的接口,都是推理性很強(qiáng)。

  幾何原本總共13卷,研究前六卷就可以了,因?yàn)楹筮叺亩际菓?yīng)用前邊的理論,應(yīng)用到具體的領(lǐng)域,無理數(shù),立體幾何等領(lǐng)域,幾何原本我認(rèn)為最精髓的就是合理的假設(shè),對點(diǎn)線面的抽象,這樣才得以使得后面的定理成立,其中第五個公設(shè)后來還被推翻了,以點(diǎn)線面作為基礎(chǔ),以歐幾里得工具作為工具,進(jìn)行了各種幾何現(xiàn)象的'嚴(yán)密推理,我認(rèn)為這些定理成立的條件必須是在,對幾條哲學(xué)原則默許了之后,才能成立。主要是最簡單的幾何形狀,從怎么畫出來,畫出來也是有根據(jù)的,再就是各種形狀的性質(zhì),以及各種形狀之間關(guān)系的定理,都是一步一步推理出來的。

  在幾何原本后續(xù)的有阿波羅尼奧斯的《圓錐截線論》,牛頓的《自然哲學(xué)的數(shù)學(xué)原理》,算是比較系統(tǒng)的數(shù)學(xué)著作,也都是用歐幾里得工具進(jìn)行證明的,后來的微積分工具的出現(xiàn),我認(rèn)為是圓周率的求解過程,無限接近的思想,才使得微積分工具產(chǎn)生,現(xiàn)代數(shù)學(xué)看似陣容豪華,可是并沒有新的工具的出現(xiàn),只是對微積分工具在各個形狀上進(jìn)行應(yīng)用,數(shù)學(xué)主要是在空間上做文章,現(xiàn)在數(shù)學(xué)能干的活看似挺多,但是也要得益于物理學(xué)的發(fā)展,數(shù)學(xué)一方面往一般性方面發(fā)展,都忘了,細(xì)想數(shù)學(xué)思想是比較沒什么,只是腦力勞作比較大,特別是只是純數(shù)學(xué)研究,不做思想的人,很累也做不出有意義的工作。

  看完二十世紀(jì)數(shù)學(xué)史,發(fā)現(xiàn)里面的人的著作,我一本也不想看,太虛。

《幾何原本》讀后感9

  徐光啟(公元1562—1633年)字子先,號玄扈,吳淞(今屬上海)人。他從萬歷末年起,經(jīng)過天啟、崇禎各朝,曾作到文淵閣大學(xué)士的官職(相當(dāng)于宰相)。他精通天文歷法,是明末改歷的主要主持人。他對農(nóng)學(xué)也頗有研究,曾根據(jù)前人所著各種農(nóng)書,附以自己的見解,編寫了著名的《農(nóng)政全書》,全書有六十余卷,共六十多萬字。明朝末年,滿族的統(tǒng)治階級從東北關(guān)外屢次發(fā)動戰(zhàn)爭,徐光啟曾屢次上書論軍事,并在通州練新兵,主張采用西方火炮。他是一位熱愛祖國的科學(xué)家。

  他沒有入京做官之前,曾在上海、廣東、廣西等地教書。在此期間,他曾博覽群書,在廣東還接觸到一些傳教士,對他們傳入的西方文化開始有所接觸。公元1600年,他在南京和利瑪竇相識,以后兩人又長期同住在北京,經(jīng)常來往。他和利瑪竇兩人共同譯《幾何原本》一書,1607年譯完前六卷。當(dāng)時徐光啟很想全部譯完,利瑪竇卻不愿這樣做。直到晚清時代,《幾何原本》后九卷的翻譯工作才由李善蘭(公元1811—1882年)完成。

  《幾何原本》是我國最早第一部自拉丁文譯來的數(shù)學(xué)著作。在翻譯時絕無對照的.詞表可循,許多譯名都從無到有,當(dāng)時創(chuàng)造的。毫無疑問,這是需要精細(xì)研究煞費(fèi)苦心的。這個譯本中的許多譯名都十分恰當(dāng),不但在我國一直沿用至今,并且還影響了日本、朝鮮各國。如點(diǎn)、線、直線、曲線、平行線、角、直角、銳角、鈍角、三角形、四邊形……這許多名詞都是由這個譯本首先定下來的。其中只有極少的幾個經(jīng)后人改定,如“等邊三角形”,徐光啟當(dāng)時記作“平邊三角形”;“比”,當(dāng)時譯為“比例”;而“比例”則譯為“有理的比例”等等。

  《幾何原本》有嚴(yán)整的邏輯體系,其敘述方式和中國傳統(tǒng)的《九章算術(shù)》完全不同。徐光啟對《幾何原本》區(qū)別于中國傳統(tǒng)數(shù)學(xué)的這種特點(diǎn),有著比較清楚的認(rèn)識。他還充分認(rèn)識到幾何學(xué)的重要意義,他說“竊百年之后,必人人習(xí)之”。

  清康熙帝時,編輯數(shù)學(xué)百科全書《數(shù)理精蘊(yùn)》(公元1723年),其中收有《幾何原本》一書,但這是根據(jù)公元十八世紀(jì)法國幾何學(xué)教科書翻譯的,和歐幾里得的《幾何原本》差別很大。

  到清朝末年廢科舉、興學(xué)堂之后,幾何學(xué)方成為學(xué)校中必修科目之一。到這時才出現(xiàn)了徐光啟所預(yù)料的“必人人而習(xí)之”的情況。

《幾何原本》讀后感10

  《幾何原本》是古希臘數(shù)學(xué)家歐幾里得的一部不朽之作,大約成書于公元前300年左右,是一部劃時代的著作,是最早用公理法建立起演繹數(shù)學(xué)體系的典范。它從少數(shù)幾個原始假定出發(fā),通過嚴(yán)密的邏輯推理,得到一系列的命題,從而保證了結(jié)論的準(zhǔn)確可靠。《幾何原本》的原著有13卷,共包含有23個定義、5個公設(shè)、5個公理、286個命題。是當(dāng)時整個希臘數(shù)學(xué)成果、方法、思想和精神的結(jié)晶,其內(nèi)容和形式對幾何學(xué)本身和數(shù)學(xué)邏輯的發(fā)展有著巨大的影響。自它問世之日起,在長達(dá)二千多年的時間里一直盛行不衰。它歷經(jīng)多次翻譯和修訂,自1482年第一個印刷本出版后,至今已有一千多種不同的版本。除了《圣經(jīng)》之外,沒有任何其他著作,其研究、使用和傳播之廣泛,能夠與《幾何原本》相比。但《幾何原本》超越民族、種族、宗教信仰、文化意識方面的影響,卻是《圣經(jīng)》所無法比擬的。

  《幾何原本》的希臘原始抄本已經(jīng)流失了,它的所有現(xiàn)代版本都是以希臘評注家泰奧恩(Theon,約比歐幾里得晚七百年)編寫的修訂本為依據(jù)的。

  《幾何原本》的泰奧恩修訂本分13卷,總共有465個命題,其內(nèi)容是闡述平面幾何、立體幾何及算術(shù)理論的系統(tǒng)化知識。第一卷首先給出了一些必要的基本定義、解釋、公設(shè)和公理,還包括一些關(guān)于全等形、平行線和直線形的熟知的定理。該卷的最后兩個命題是畢達(dá)哥拉斯定理及其逆定理。這里我們想到了關(guān)于英國哲學(xué)家T.霍布斯的一個小故事:有一天,霍布斯在偶然翻閱歐幾里得的《幾何原本》,看到畢達(dá)哥拉斯定理,感到十分驚訝,他說:“上帝啊!這是不可能的!彼珊笙蚯白屑(xì)閱讀第一章的每個命題的證明,直到公理和公設(shè),他終于完全信服了。第二卷篇幅不大,主要討論畢達(dá)哥拉斯學(xué)派的幾何代數(shù)學(xué)。

  第三卷包括圓、弦、割線、切線以及圓心角和圓周角的一些熟知的定理。這些定理大多都能在現(xiàn)在的中學(xué)數(shù)學(xué)課本中找到。第四卷則討論了給定圓的某些內(nèi)接和外切正多邊形的尺規(guī)作圖問題。第五卷對歐多克斯的比例理論作了精彩的解釋,被認(rèn)為是最重要的數(shù)學(xué)杰作之一。據(jù)說,捷克斯洛伐克的一位并不出名的數(shù)學(xué)家和牧師波爾查諾(Bolzano,1781-1848),在布拉格度假時,恰好生病,為了分散注意力,他拿起《幾何原本》閱讀了第五卷的內(nèi)容。他說,這種高明的方法使他興奮無比,以致于從病痛中完全解脫出來。此后,每當(dāng)他朋友生病時,他總是把這作為一劑靈丹妙藥問病人推薦。第七、八、九卷討論的是初等數(shù)論,給出了求兩個或多個整數(shù)的最大公因子的“歐幾里得算法”,討論了比例、幾何級數(shù),還給出了許多關(guān)于數(shù)論的重要定理。第十卷討論無理量,即不可公度的線段,是很難讀懂的一卷。最后三卷,即第十一、十二和十三卷,論述立體幾何。目前中學(xué)幾何課本中的內(nèi)容,絕大多數(shù)都可以在《幾何原本》中找到。

  《幾何原本》按照公理化結(jié)構(gòu),運(yùn)用了亞里士多德的邏輯方法,建立了第一個完整的關(guān)于幾何學(xué)的演繹知識體系。所謂公理化結(jié)構(gòu)就是:選取少量的原始概念和不需證明的命題,作為定義、公設(shè)和公理,使它們成為整個體系的出發(fā)點(diǎn)和邏輯依據(jù),然后運(yùn)用邏輯推理證明其他命題!稁缀卧尽烦蔀榱藘汕Ф嗄陙磉\(yùn)用公理化方法的一個絕好典范。

  誠然,正如一些現(xiàn)代數(shù)學(xué)家所指出的那樣,《幾何原本》存在著一些結(jié)構(gòu)上的缺陷,但這絲毫無損于這部著作的崇高價值。它的影響之深遠(yuǎn).使得“歐幾里得”與“幾何學(xué)”幾乎成了同義語。它集中體現(xiàn)了希臘數(shù)學(xué)所奠定的數(shù)學(xué)思想、數(shù)學(xué)精神,是人類文化遺產(chǎn)中的一塊瑰寶。

  也許這算不上是個謎。稍具文化修養(yǎng)的人都會告訴你,歐幾里德《幾何原本》是明末傳入的,它的譯者是徐光啟與利瑪竇。但究竟何時傳入,在中外科技史界卻一直是一個懸案。

  著名的科技史家李約瑟在《中國科學(xué)技術(shù)史》中指出:“有理由認(rèn)為,歐幾里德幾何學(xué)大約在公元1275年通過阿拉伯人第一次傳到中國,但沒有多少學(xué)者對它感興趣,即使有過一個譯本,不久也就失傳了!边@并非離奇之談,元代一位老穆斯林技術(shù)人員曾為蒙古人服務(wù),一位受過高等教育的敘利亞景教徒愛薩曾是翰林院學(xué)士和大臣。波斯天文學(xué)家札馬魯丁曾為忽必烈設(shè)計(jì)過《萬年歷》。歐幾里德的幾何學(xué)就是通過這方面的交往帶到中國的。14世紀(jì)中期成書的《元秘書監(jiān)志》卷七曾有記載:當(dāng)時官方天文學(xué)家曾研究某些西方著作,其中包括兀忽烈的的《四季算法段數(shù)》15冊,這部書于1273年收入皇家書庫!柏:隽业摹笨赡苁恰皻W幾里德”的.另一種音譯,“四擘”

  是阿拉伯語“原本”的音譯。著名的數(shù)學(xué)史家嚴(yán)敦杰認(rèn)為傳播者是納西爾。丁。土西,一位波斯著名的天文學(xué)家的。

  有的外國學(xué)者認(rèn)為歐幾里德《幾何原本》的任何一種阿拉伯譯本都沒有多于13冊,因?yàn)橐恢钡轿乃噺?fù)興時才增輯了最后兩冊,因此對元代時就有15冊的歐幾里德的幾何學(xué)之說似難首肯。

  有的史家提出原文可能仍是阿拉伯文,而中國人只譯出了書名。也有的認(rèn)為演繹幾何學(xué)知識在中國傳播得這樣遲緩,以后若干世紀(jì)都看不到這種影響,說明元代顯然不存在有《幾何原本》中譯本的可能性。也有的學(xué)者提出假設(shè):皇家天文臺搞了一個譯本,可能由于它與20xx年的中國數(shù)學(xué)傳統(tǒng)背道而馳而引不起廣泛的興趣的。

  真正在中國發(fā)生影響的譯本是徐光啟和利瑪竇合譯的克拉維斯的注解本。但有的同志認(rèn)為這算不上是完整意義上的歐幾里德的幾何學(xué)。因?yàn)槔敻]老師的這個底本共十五卷,利瑪竇只譯出了前六卷,認(rèn)為已達(dá)到他們用數(shù)學(xué)來籠絡(luò)人心的目的,于是沒有答應(yīng)徐光啟希望全部譯完的要求。200多年后,后九卷才由著名數(shù)學(xué)家李善蘭與美國傳教士偉烈亞力合譯完成,也就是說,直到1857年這部古希臘的數(shù)學(xué)名著才有了完整意義上的中譯本。那么,這能否說:《幾何原本》的完整意義上的傳入中國是在近代呢?

《幾何原本》讀后感11

  也許這算不上是個謎。稍具文化修養(yǎng)的人都會告訴你,歐幾里德《幾何原本》是明末傳入的,它的譯者是徐光啟與利瑪竇。但究竟何時傳入,在中外科技史界卻一直是一個懸案。以下是“讀幾何原本讀后感作文”,希望能夠幫助的到您!

  讀《幾何原本》的作者歐幾里得能夠代表整個古希臘人民,那么我可以說,古希臘是古代文化中最燦爛的一支——因?yàn)楣畔ED的數(shù)學(xué)中,所包含的不僅僅是數(shù)學(xué),還有著難得的邏輯,更有著耐人尋味的哲學(xué),《幾何原本》讀后感作文。

  《幾何原本》這本數(shù)學(xué)著作,以幾個顯而易見、眾所周知的定義、公設(shè)和公理,互相搭橋,展開了一系列的命題:由簡單到復(fù)雜,相輔而成。其邏輯的嚴(yán)密,不能不令我們佩服。

  就我目前拜訪的幾個命題來看,歐幾里得證明關(guān)于線段“一樣長”的題,最常用、也是最基本的,便是畫圓:因?yàn)椋粋圓的所有半徑都相等。一般的數(shù)學(xué)思想,都是很復(fù)雜的,這邊剛講一點(diǎn),就又跑到那邊去了;而《幾何原本》非常容易就被我接受,其原因大概就在于歐幾里得反復(fù)運(yùn)用一種思想、使讀者不斷接受的緣故吧。

  不過,我要著重講的,是他的哲學(xué)。

  書中有這樣幾個命題:如,“等腰三角形的兩底角相等,將腰延長,與底邊形成的兩個補(bǔ)角亦相等”,再如,“如果在一個三角形里,有兩個角相等,那么也有兩條邊相等”,讀后感《《幾何原本》讀后感作文》。這些命題,我在讀時,內(nèi)心一直承受著幾何外的震撼。

  我們七年級已經(jīng)學(xué)了幾何。想想那時做這類證明題,需要證明一個三角形中的兩個角相等的時候,我們總是會這么寫:“因?yàn)樗且粋等腰三角形,所以兩底角相等”——我們總是習(xí)慣性的認(rèn)為,等腰三角形的兩個底角就是相等的;而看《幾何原本》,他思考的`是“等腰三角形的兩個底角為什么相等”。想想看吧,一個思想習(xí)以為常,一個思想在思考為什么,這難道還不夠說明現(xiàn)代人的問題嗎?

  大多數(shù)現(xiàn)代人,好奇心似乎已經(jīng)泯滅了。這里所說的好奇心不單單是指那種對新奇的事物感興趣,同樣指對平常的事物感興趣。比如說,許多人會問“宇航員在空中為什么會飄起來”,但也許不會問“我們?yōu)槭裁茨軌蛘驹诘厣隙粫h起來”;許多人會問“吃什么東西能減肥”,但也許不會問“羊?yàn)槭裁闯圆荻怀匀狻薄?/p>

  我們對身邊的事物太習(xí)以為常了,以致不會對許多“平!钡氖挛锔信d趣,進(jìn)而去琢磨透它。牛頓為什么會發(fā)現(xiàn)萬有引力?很大一部分原因,就在于他有好奇心。

  如果僅把《幾何原本》當(dāng)做數(shù)學(xué)書看,那可就大錯特錯了:因?yàn)楣畔ED的數(shù)學(xué)滲透著哲學(xué),學(xué)數(shù)學(xué),就是學(xué)哲學(xué)。

  哲學(xué)第一課:人要建立好奇心,不僅探索新奇的事物,更要探索身邊的平常事,這就是我讀《幾何原本》意外的收獲吧!

《幾何原本》讀后感12

  讀《幾何原本》的作者數(shù)學(xué)家歐幾里得能夠代表整個古希臘人民,那么我可以說,古希臘是古代文化中最燦爛的一支——因?yàn)楣畔ED的數(shù)學(xué)中,所包含的不僅僅是數(shù)學(xué),還有著難得的邏輯,更有著耐人尋味的哲學(xué)..

  《幾何原本》這本數(shù)學(xué)著作,以幾個顯而易見、眾所周知的定義、公設(shè)和公理,互相搭橋,展開了一系列的命題:由簡單到復(fù)雜,相輔而成。其邏輯的嚴(yán)密,不能不令我們佩服。

  就我目前拜訪的幾個命題來看,數(shù)學(xué)家歐幾里得證明關(guān)于線段“一樣長”的題,最常用、也是最基本的,便是畫圓:因?yàn),一個圓的所有半徑都相等。一般的數(shù)學(xué)思想,都是很復(fù)雜的,這邊剛講一點(diǎn),就又跑到那邊去了;而《幾何原本》非常容易就被我接受,其原因大概就在于數(shù)學(xué)家歐幾里得反復(fù)運(yùn)用一種思想、使讀者不斷接受的緣故吧。

  不過,我要著重講的,是他的'哲學(xué)。

  書中有這樣幾個命題:如,“等腰三角形的兩底角相等,將腰延長,與底邊形成的兩個補(bǔ)角亦相等”,再如,“如果在一個三角形里,有兩個角相等,那么也有兩條邊相等”,這些命題,我在讀時,內(nèi)心一直承受著幾何外的震撼。

  我們七年級已經(jīng)學(xué)了幾何。想想那時做這類證明題,需要證明一個三角形中的兩個角相等的時候,我們總是會這么寫:“因?yàn)樗且粋等腰三角形,所以兩底角相等”——我們總是習(xí)慣性的認(rèn)為,等腰三角形的兩個底角就是相等的;而看《幾何原本》,他思考的是“等腰三角形的兩個底角為什么相等”。想想看吧,一個思想習(xí)以為常,一個思想在思考為什么,這難道還不夠說明現(xiàn)代人的問題嗎?

  大多數(shù)現(xiàn)代人,好奇心似乎已經(jīng)泯滅了。這里所說的好奇心不單單是指那種對新奇的事物感興趣,同樣指對平常的事物感興趣。比如說,許多人會問“宇航員在空中為什么會飄起來”,但也許不會問“我們?yōu)槭裁茨軌蛘驹诘厣隙粫h起來”;許多人會問“吃什么東西能減肥”,但也許不會問“羊?yàn)槭裁闯圆荻怀匀狻薄?/p>

  我們對身邊的事物太習(xí)以為常了,以致不會對許多“平!钡氖挛锔信d趣,進(jìn)而去琢磨透它。牛頓為什么會發(fā)現(xiàn)萬有引力?很大一部分原因,就在于他有好奇心。

  如果僅把《幾何原本》當(dāng)做數(shù)學(xué)書看,那可就大錯特錯了:因?yàn)楣畔ED的數(shù)學(xué)滲透著哲學(xué),學(xué)數(shù)學(xué),就是學(xué)哲學(xué)。

  哲學(xué)第一課:人要建立好奇心,不僅探索新奇的事物,更要探索身邊的平常事,這就是我讀《幾何原本》意外的收獲吧!

《幾何原本》讀后感13

  今天看了一本叫《幾何原本》的書。它是古希臘數(shù)學(xué)家、哲學(xué)家歐幾里得的一部不朽之作,將希臘數(shù)學(xué)家的成就和精神集于一冊。

  《幾何原本》收錄了原著13卷的全部內(nèi)容,包括5個公理、5個公設(shè)、23個定義和467個命題,即先提出公理、公設(shè)和定義,再從中證明從簡單到復(fù)雜,這里基于歐幾里德幾何系統(tǒng)。歐幾里德認(rèn)為,數(shù)學(xué)是一個貴族的世界,即使你是世俗的君主,在這里也沒有特權(quán)。與時間易逝的物質(zhì)相比,數(shù)學(xué)揭示的世界是永恒的。 《幾何原本》不僅是一部數(shù)學(xué)著作,而且充滿哲學(xué)精神,首次完成了人類對空間的認(rèn)識。古希臘數(shù)學(xué)是從哲學(xué)中誕生的。它用各種可能的描述來分析我們的宇宙,使它不再混亂和分離。它與世俗的中國和古埃及數(shù)學(xué)的起源和應(yīng)用完全不同。它建立了一定的物質(zhì)世界和精神世界體系,讓渺小的.人類從中獲得一些自信。

  本書的命題1提出了如何構(gòu)造等邊三角形,由此產(chǎn)生了三角形同余定理。即角、邊、角或邊、角、邊或邊、邊、邊相等,進(jìn)一步提出等腰三角形——等邊等于角;相等的角等于相等的邊。就這樣,歐幾里得從點(diǎn)、線、面、角四個部分,由淺入深,提出了自己的幾何理論。先前的命題為未來鋪路;后面的命題是從前面的命題推導(dǎo)出來的,前后聯(lián)系緊密,非常嚴(yán)謹(jǐn)。

《幾何原本》讀后感14

  《幾何原本》是古希臘數(shù)學(xué)家歐幾里得的一部不朽之作,集整個古希臘數(shù)學(xué)的成果和精神于一身。既是數(shù)學(xué)巨著,也是哲學(xué)巨著,并且第一次完成了人類對空間的認(rèn)識。該書自問世之日起,在長達(dá)兩千多年的時間里,歷經(jīng)多次翻譯和修訂,自1482年第一個印刷本出版,至今已有一千多種不同版本。

  除《圣經(jīng)》以外,沒有任何其他著作,其研究、使用和傳播之廣泛能夠和《幾何原本》相比。漢語的最早譯本是由意大利傳教士利瑪竇和明代科學(xué)家徐光啟于1607年合作完成的,但他們只譯出了前六卷。證實(shí)這個殘本斷定了中國現(xiàn)代數(shù)學(xué)的基本術(shù)語,諸如三角形、角、直角等。日本、印度等東方國家皆使用中國譯法,沿用至今。近百年來,雖然大陸的中學(xué)課本必提及這一偉大著作,但對中國讀者來說,卻無緣一睹它的全貌,納入家庭藏書更是妄想。

  徐光啟在譯此作時,對該書有極高的`評價,他說:“能精此書者,無一事不可精;好學(xué)此書者,無一事不科學(xué)!爆F(xiàn)代科學(xué)的奠基者愛因斯坦更是認(rèn)為:如果歐幾里得未能激發(fā)起你少年時代的科學(xué)熱情,那你肯定不會是一個天才的科學(xué)家。由此可見,《幾何原本》對人們理性推演能力的影響,即對人的科學(xué)思想的影響是何等巨大。在高等數(shù)學(xué)中,有正交的概念,最早的概念起源應(yīng)該是畢達(dá)哥拉斯定理,我們稱之為勾股定理,只是勾3股4弦5是一種特例,而畢氏定理對任意直角三角形都成立。并由畢氏定理,發(fā)現(xiàn)了無理數(shù)根號2。在數(shù)學(xué)方法上初步涉及演繹法,又在證明命題時用了歸謬法(即反證法)?赡苡捎谑軄G番圖(Diophantus)對一個平方數(shù)分成兩個平方數(shù)整數(shù)解的啟發(fā),350多年前,法國數(shù)學(xué)家費(fèi)馬提出了著名的費(fèi)馬大定理,吸引了歷代數(shù)學(xué)家為它的證明付出了巨大的努力,有力地推動了數(shù)論用至整個數(shù)學(xué)的進(jìn)步。1994年,這一曠世難題被英國數(shù)學(xué)家安德魯威樂斯解決。

  多少年來,千千萬萬人(著名的有牛頓(Newton)、阿基米德(Archimedes)等)通過歐幾里得幾何的學(xué)習(xí)受到了邏輯的訓(xùn)練,從而邁入科學(xué)的殿堂。

《幾何原本》讀后感15

  在文藝復(fù)興以后的歐洲,代數(shù)學(xué)由于受到阿拉伯的影響而迅速發(fā)展。另一方面,17世紀(jì)以后,數(shù)學(xué)分析的發(fā)展非常顯著。因此,幾何學(xué)也擺脫了和代數(shù)學(xué)相隔離的狀態(tài)。正如在其名著《幾何學(xué)》中所說的一樣,數(shù)與圖形之間存在著密切的關(guān)系,在空間設(shè)立坐標(biāo),而且以數(shù)與數(shù)之間關(guān)系來表示圖形;反過來,可把圖形表示成為數(shù)與數(shù)之間的關(guān)系。這樣,按照坐標(biāo)把圖形改成數(shù)與數(shù)之間的關(guān)系問題而對之進(jìn)行處理,這個方法稱為解析幾何。恩格斯在其《自然辯證法》中高度評價了笛卡兒的工作,他指出:“數(shù)學(xué)中的轉(zhuǎn)折點(diǎn)是笛卡兒的變數(shù),有了變數(shù),運(yùn)動進(jìn)入了數(shù)學(xué),有了變數(shù),辯證法進(jìn)入了數(shù)學(xué),有了變數(shù),微分和積分也就成為必要的了,……”

  事實(shí)上,笛卡兒的思想為17世紀(jì)數(shù)學(xué)分析的發(fā)展提供了有力的基礎(chǔ)。到了18世紀(jì),解析幾何由于L.歐拉等人的'開拓得到迅速的發(fā)展,連希臘時代的阿波羅尼奧斯(約公元前262~約前190)等人探討過的圓錐曲線論,也重新被看成為二次曲線論而加以代數(shù)地整理。另外,18世紀(jì)中發(fā)展起來的數(shù)學(xué)分析反過來又被應(yīng)用到幾何學(xué)中去,在該世紀(jì)末期,G.蒙日首創(chuàng)了數(shù)學(xué)分析對于幾何的應(yīng)用,而成為微分幾何的先驅(qū)者。 如上所述,用解析幾何的方法可以討論許多幾何問題。但是不能說,這對于所有問題都是最適用的。同解析幾何方法相對立的,有綜合幾何或純粹幾何方法,它是不用坐標(biāo)而直接考察圖形的方法,數(shù)學(xué)家歐幾里得幾何本來就是如此。射影幾何是在這思想方法指導(dǎo)下的產(chǎn)物。

  早在文藝復(fù)興時期的意大利盛行而且發(fā)展了造型美術(shù),與它隨伴而來的有所謂透視圖法的研究,當(dāng)時有過許多人包括達(dá)·芬奇在內(nèi)把這個透視圖法作為實(shí)用幾何進(jìn)行了研究。從17世紀(jì)起,G.德扎格、B.帕斯卡把這個透視圖法加以推廣和發(fā)展,從而奠定了射影幾何。分別以他們命名的兩個定理,成了射影幾何的基礎(chǔ)。其一是德扎格定理:如果平面上兩個三角形的對應(yīng)頂點(diǎn)的連線相會于一點(diǎn),那么它們的對應(yīng)邊的交點(diǎn)在一直線上;而且反過來也成立。其二是帕斯卡定理:如果一個六角形的頂點(diǎn)在同一圓錐曲線上,那么它的三對對邊的交點(diǎn)在同一直線上;而且反過來也成立。18世紀(jì)以后,J.-V.彭賽列、Z.N.M.嘉諾、J.施泰納等完成了這門幾何學(xué)。

【《幾何原本》讀后感】相關(guān)文章:

讀《幾何原本》有感03-19

創(chuàng)業(yè)失敗 原因幾何?02-20

創(chuàng)業(yè)失敗的原因幾何03-26

幾何彩色求職簡歷封面08-07

公關(guān)人才薪酬幾何03-26

簡單幾何求職信封面07-20

黑白幾何求職信封面07-19

職場觀察:公關(guān)人才薪酬幾何10-25

職場觀察:公關(guān)人才薪酬幾何07-30